mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 12:00:30 +08:00

* add poros to fastdeploy * update readme * update readme & add license for all files * update benchmark * update copyright for some files Co-authored-by: tianjinjin <tianjinjin@baidu.com>
70 lines
3.0 KiB
C++
70 lines
3.0 KiB
C++
// Copyright (c) 2022 Baidu, Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/**
|
|
* @file conv2d_test.cpp
|
|
* @author tianshaoqing@baidu.com
|
|
* @date Wed Sep 27 11:24:21 CST 2021
|
|
* @brief
|
|
**/
|
|
#include <string>
|
|
#include <vector>
|
|
#include <gflags/gflags.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "poros/util/test_util.h"
|
|
#include "poros/converter/gpu/convolution.h"
|
|
|
|
static void conv2d_test_helper(const std::string& graph_IR,
|
|
baidu::mirana::poros::IConverter* converter,
|
|
std::vector<int64_t> shape_inputs,
|
|
std::vector<int64_t> shape_weights,
|
|
std::vector<int64_t> shape_bias) {
|
|
std::vector<at::Tensor> input_data;
|
|
// auto in = at::randn({1, 3, 10, 10}, {at::kCUDA});
|
|
// auto w = at::randn({8, 3, 5, 5}, {at::kCUDA});
|
|
// auto b = at::randn({8}, {at::kCUDA});
|
|
auto in = at::randn(shape_inputs, {at::kCUDA});
|
|
auto w = at::randn(shape_weights, {at::kCUDA});
|
|
auto b = at::randn(shape_bias, {at::kCUDA});
|
|
input_data.push_back(in);
|
|
input_data.push_back(w);
|
|
input_data.push_back(b);
|
|
|
|
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
|
|
// 运行原图与engine获取结果
|
|
std::vector<at::Tensor> graph_output;
|
|
std::vector<at::Tensor> poros_output;
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output));
|
|
|
|
ASSERT_EQ(1, graph_output.size());
|
|
ASSERT_EQ(1, poros_output.size());
|
|
//ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6));
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 0.0001));
|
|
}
|
|
|
|
TEST(Converters, ATenConv2dVggishTestConvertsCorrectly) {
|
|
// aten::conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1, int groups=1) -> Tensor
|
|
const auto graph_IR = R"IR(
|
|
graph(%0 : Tensor, %1 : Tensor, %2 : Tensor):
|
|
%3 : int[] = prim::Constant[value=[1, 1]]()
|
|
%4 : int[] = prim::Constant[value=[1, 1]]()
|
|
%5 : int[] = prim::Constant[value=[1, 1]]()
|
|
%6 : int = prim::Constant[value=1]()
|
|
%7 : Tensor = aten::conv2d(%0, %1, %2, %3, %4, %5, %6)
|
|
return (%7))IR";
|
|
baidu::mirana::poros::ConvolutionConverter convolutionconverter;
|
|
conv2d_test_helper(graph_IR, &convolutionconverter, {60, 256, 12, 8}, {512, 256, 3, 3}, {512});
|
|
}
|