// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file conv2d_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include #include #include "poros/util/test_util.h" #include "poros/converter/gpu/convolution.h" static void conv2d_test_helper(const std::string& graph_IR, baidu::mirana::poros::IConverter* converter, std::vector shape_inputs, std::vector shape_weights, std::vector shape_bias) { std::vector input_data; // auto in = at::randn({1, 3, 10, 10}, {at::kCUDA}); // auto w = at::randn({8, 3, 5, 5}, {at::kCUDA}); // auto b = at::randn({8}, {at::kCUDA}); auto in = at::randn(shape_inputs, {at::kCUDA}); auto w = at::randn(shape_weights, {at::kCUDA}); auto b = at::randn(shape_bias, {at::kCUDA}); input_data.push_back(in); input_data.push_back(w); input_data.push_back(b); baidu::mirana::poros::PorosOptions poros_option; // default device GPU // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, converter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); //ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 0.0001)); } TEST(Converters, ATenConv2dVggishTestConvertsCorrectly) { // aten::conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1, int groups=1) -> Tensor const auto graph_IR = R"IR( graph(%0 : Tensor, %1 : Tensor, %2 : Tensor): %3 : int[] = prim::Constant[value=[1, 1]]() %4 : int[] = prim::Constant[value=[1, 1]]() %5 : int[] = prim::Constant[value=[1, 1]]() %6 : int = prim::Constant[value=1]() %7 : Tensor = aten::conv2d(%0, %1, %2, %3, %4, %5, %6) return (%7))IR"; baidu::mirana::poros::ConvolutionConverter convolutionconverter; conv2d_test_helper(graph_IR, &convolutionconverter, {60, 256, 12, 8}, {512, 256, 3, 3}, {512}); }