Files
FastDeploy/paddle2onnx/optimizer/paddle2onnx_optimizer.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

241 lines
9.1 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/optimizer/paddle2onnx_optimizer.h"
#include <onnx/shape_inference/implementation.h>
#include <fstream>
#include "onnxoptimizer/optimize.h"
#include "paddle2onnx/optimizer/eliminate_non_transpose.h"
#include "paddle2onnx/optimizer/fuse_constant_cast.h"
#include "paddle2onnx/optimizer/fuse_constant_reshape.h"
#include "paddle2onnx/optimizer/fuse_constant_unsqueeze.h"
#include "paddle2onnx/optimizer/fuse_paddle_conv_bias.h"
#include "paddle2onnx/optimizer/fuse_unsqueeze_conv2d_squeeze.h"
#include "paddle2onnx/optimizer/replace_add_to_identity.h"
#include "paddle2onnx/optimizer/replace_mul_to_identity.h"
#include "paddle2onnx/utils/utils.h"
#include "paddle2onnx/converter.h"
namespace ONNX_NAMESPACE {
namespace optimization {
ONNX_NAMESPACE::ModelProto OptimizeOnnxModel(
const ONNX_NAMESPACE::ModelProto& model_proto) {
OptimizerOption option;
option.passes.clear();
option.passes.push_back("eliminate_identity");
option.passes.push_back("eliminate_deadend");
auto optimized_model_proto =
ONNX_NAMESPACE::optimization::Optimize(model_proto, option.passes);
// reinfer shape for this onnx model
auto graph = optimized_model_proto.mutable_graph();
// clear all the type info of outputs
auto output_size = graph->output_size();
for (size_t i = 0; i < output_size; ++i) {
graph->mutable_output(i)->clear_type();
}
try {
shape_inference::InferShapes(optimized_model_proto);
} catch (const std::exception& e) {
P2OLogger(true) << "[ERROR] Failed to reinfer shape for this model."
<< std::endl;
P2OLogger(true) << e.what() << std::endl;
}
return optimized_model_proto;
}
std::shared_ptr<ONNX_NAMESPACE::ModelProto> LoadModelFromFile(
const std::string& file_path) {
auto model_proto = std::make_shared<ONNX_NAMESPACE::ModelProto>();
std::ifstream fin(file_path, std::ios::in | std::ios::binary);
if (!fin.is_open()) {
P2OLogger(true)
<< "Failed to read model file: " << file_path
<< ", please make sure your model file or file path is valid."
<< std::endl;
return model_proto;
}
std::string contents;
fin.seekg(0, std::ios::end);
contents.clear();
contents.resize(fin.tellg());
fin.seekg(0, std::ios::beg);
fin.read(&(contents.at(0)), contents.size());
fin.close();
if (!model_proto->ParseFromString(contents)) {
P2OLogger(true) << "Failed to load ONNX model from file." << std::endl;
return model_proto;
}
return model_proto;
}
bool OptimizePaddle2ONNX(const std::string& model_path,
const std::string& optimized_model_path,
const OptimizerOption& option) {
auto model_proto = LoadModelFromFile(model_path);
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantReshape>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantUnsqueeze>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FusePaddleConvBias>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseUnsqueezeConv2dSqueeze>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::EliminateNonTranspose>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantCast>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::ReplaceMulToIdentity>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::ReplaceAddToIdentity>();
auto optimized_model_proto = ONNX_NAMESPACE::optimization::Optimize(
*(model_proto.get()), option.passes);
std::string optimized_model_str;
if (!optimized_model_proto.SerializeToString(&optimized_model_str)) {
P2OLogger(true) << "Failed to serialize the optimized model protobuf."
<< std::endl;
return false;
}
std::fstream out(optimized_model_path, std::ios::out | std::ios::binary);
if (!out) {
P2OLogger(true) << "Failed to write the optimized model to disk at "
<< optimized_model_path << "." << std::endl;
return false;
}
out << optimized_model_str;
out.close();
return true;
}
bool OptimizePaddle2ONNX(
const std::string& model_path, const std::string& optimized_model_path,
const std::map<std::string, std::vector<int>>& shape_infos,
const OptimizerOption& option) {
auto model_proto = LoadModelFromFile(model_path);
if (shape_infos.size() > 0) {
// reinfer shape for this onnx model
auto graph = model_proto->mutable_graph();
// clear all the type info of outputs
auto output_size = graph->output_size();
for (size_t i = 0; i < output_size; ++i) {
graph->mutable_output(i)->clear_type();
}
// reset type info of inputs
auto input_size = graph->input_size();
for (size_t i = 0; i < input_size; ++i) {
auto input_name = graph->input(i).name();
auto iter = shape_infos.find(input_name);
if (iter != shape_infos.end()) {
auto tensor_type_proto =
graph->mutable_input(i)->mutable_type()->mutable_tensor_type();
tensor_type_proto->clear_shape();
auto shape = tensor_type_proto->mutable_shape();
for (auto& dim : iter->second) {
shape->add_dim()->set_dim_value(dim);
}
}
}
try {
shape_inference::InferShapes(*(model_proto.get()));
} catch (const std::exception& e) {
P2OLogger(true) << "[ERROR] Failed to reinfer shape for this model."
<< std::endl;
P2OLogger(true) << e.what() << std::endl;
return false;
}
}
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantReshape>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantUnsqueeze>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FusePaddleConvBias>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseUnsqueezeConv2dSqueeze>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::EliminateNonTranspose>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantCast>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::ReplaceMulToIdentity>();
ONNX_NAMESPACE::optimization::Optimizer::passes
.registerPass<ONNX_NAMESPACE::optimization::ReplaceAddToIdentity>();
auto optimized_model_proto = ONNX_NAMESPACE::optimization::Optimize(
*(model_proto.get()), option.passes);
std::string optimized_model_str;
if (!optimized_model_proto.SerializeToString(&optimized_model_str)) {
P2OLogger(true) << "Failed to serialize the optimized model protobuf."
<< std::endl;
return false;
}
std::fstream out(optimized_model_path, std::ios::out | std::ios::binary);
if (!out) {
P2OLogger(true) << "Failed to write the optimized model to disk at "
<< optimized_model_path << "." << std::endl;
return false;
}
out << optimized_model_str;
out.close();
return true;
}
bool Paddle2ONNXFP32ToFP16(const std::string& model_path,
const std::string& converted_model_path) {
std::ifstream fin(model_path, std::ios::in | std::ios::binary);
if (!fin.is_open()) {
P2OLogger(true)
<< "Failed to read model file: " << model_path
<< ", please make sure your model file or file path is valid."
<< std::endl;
return false;
}
std::string contents;
fin.seekg(0, std::ios::end);
contents.clear();
contents.resize(fin.tellg());
fin.seekg(0, std::ios::beg);
fin.read(&(contents.at(0)), contents.size());
fin.close();
char* out_model_ptr = nullptr;
int size = 0;
ConvertFP32ToFP16(contents.c_str(), contents.size(), &out_model_ptr, &size);
std::string onnx_proto(out_model_ptr, out_model_ptr + size);
std::fstream out(converted_model_path, std::ios::out | std::ios::binary);
if (!out) {
P2OLogger(true) << "Failed to write the optimized model to disk at "
<< converted_model_path << "." << std::endl;
return false;
}
out << onnx_proto;
out.close();
return true;
}
} // namespace optimization
} // namespace ONNX_NAMESPACE