mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
241 lines
9.1 KiB
C++
241 lines
9.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle2onnx/optimizer/paddle2onnx_optimizer.h"
|
|
#include <onnx/shape_inference/implementation.h>
|
|
#include <fstream>
|
|
#include "onnxoptimizer/optimize.h"
|
|
#include "paddle2onnx/optimizer/eliminate_non_transpose.h"
|
|
#include "paddle2onnx/optimizer/fuse_constant_cast.h"
|
|
#include "paddle2onnx/optimizer/fuse_constant_reshape.h"
|
|
#include "paddle2onnx/optimizer/fuse_constant_unsqueeze.h"
|
|
#include "paddle2onnx/optimizer/fuse_paddle_conv_bias.h"
|
|
#include "paddle2onnx/optimizer/fuse_unsqueeze_conv2d_squeeze.h"
|
|
#include "paddle2onnx/optimizer/replace_add_to_identity.h"
|
|
#include "paddle2onnx/optimizer/replace_mul_to_identity.h"
|
|
#include "paddle2onnx/utils/utils.h"
|
|
|
|
#include "paddle2onnx/converter.h"
|
|
|
|
namespace ONNX_NAMESPACE {
|
|
namespace optimization {
|
|
|
|
ONNX_NAMESPACE::ModelProto OptimizeOnnxModel(
|
|
const ONNX_NAMESPACE::ModelProto& model_proto) {
|
|
OptimizerOption option;
|
|
option.passes.clear();
|
|
option.passes.push_back("eliminate_identity");
|
|
option.passes.push_back("eliminate_deadend");
|
|
|
|
auto optimized_model_proto =
|
|
ONNX_NAMESPACE::optimization::Optimize(model_proto, option.passes);
|
|
|
|
// reinfer shape for this onnx model
|
|
auto graph = optimized_model_proto.mutable_graph();
|
|
// clear all the type info of outputs
|
|
auto output_size = graph->output_size();
|
|
for (size_t i = 0; i < output_size; ++i) {
|
|
graph->mutable_output(i)->clear_type();
|
|
}
|
|
|
|
try {
|
|
shape_inference::InferShapes(optimized_model_proto);
|
|
} catch (const std::exception& e) {
|
|
P2OLogger(true) << "[ERROR] Failed to reinfer shape for this model."
|
|
<< std::endl;
|
|
P2OLogger(true) << e.what() << std::endl;
|
|
}
|
|
return optimized_model_proto;
|
|
}
|
|
|
|
std::shared_ptr<ONNX_NAMESPACE::ModelProto> LoadModelFromFile(
|
|
const std::string& file_path) {
|
|
auto model_proto = std::make_shared<ONNX_NAMESPACE::ModelProto>();
|
|
std::ifstream fin(file_path, std::ios::in | std::ios::binary);
|
|
if (!fin.is_open()) {
|
|
P2OLogger(true)
|
|
<< "Failed to read model file: " << file_path
|
|
<< ", please make sure your model file or file path is valid."
|
|
<< std::endl;
|
|
return model_proto;
|
|
}
|
|
std::string contents;
|
|
fin.seekg(0, std::ios::end);
|
|
contents.clear();
|
|
contents.resize(fin.tellg());
|
|
fin.seekg(0, std::ios::beg);
|
|
fin.read(&(contents.at(0)), contents.size());
|
|
fin.close();
|
|
|
|
if (!model_proto->ParseFromString(contents)) {
|
|
P2OLogger(true) << "Failed to load ONNX model from file." << std::endl;
|
|
return model_proto;
|
|
}
|
|
return model_proto;
|
|
}
|
|
|
|
bool OptimizePaddle2ONNX(const std::string& model_path,
|
|
const std::string& optimized_model_path,
|
|
const OptimizerOption& option) {
|
|
auto model_proto = LoadModelFromFile(model_path);
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantReshape>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantUnsqueeze>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FusePaddleConvBias>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FuseUnsqueezeConv2dSqueeze>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::EliminateNonTranspose>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantCast>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::ReplaceMulToIdentity>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::ReplaceAddToIdentity>();
|
|
|
|
auto optimized_model_proto = ONNX_NAMESPACE::optimization::Optimize(
|
|
*(model_proto.get()), option.passes);
|
|
std::string optimized_model_str;
|
|
if (!optimized_model_proto.SerializeToString(&optimized_model_str)) {
|
|
P2OLogger(true) << "Failed to serialize the optimized model protobuf."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
std::fstream out(optimized_model_path, std::ios::out | std::ios::binary);
|
|
if (!out) {
|
|
P2OLogger(true) << "Failed to write the optimized model to disk at "
|
|
<< optimized_model_path << "." << std::endl;
|
|
return false;
|
|
}
|
|
out << optimized_model_str;
|
|
out.close();
|
|
return true;
|
|
}
|
|
|
|
bool OptimizePaddle2ONNX(
|
|
const std::string& model_path, const std::string& optimized_model_path,
|
|
const std::map<std::string, std::vector<int>>& shape_infos,
|
|
const OptimizerOption& option) {
|
|
auto model_proto = LoadModelFromFile(model_path);
|
|
if (shape_infos.size() > 0) {
|
|
// reinfer shape for this onnx model
|
|
auto graph = model_proto->mutable_graph();
|
|
// clear all the type info of outputs
|
|
auto output_size = graph->output_size();
|
|
for (size_t i = 0; i < output_size; ++i) {
|
|
graph->mutable_output(i)->clear_type();
|
|
}
|
|
// reset type info of inputs
|
|
auto input_size = graph->input_size();
|
|
for (size_t i = 0; i < input_size; ++i) {
|
|
auto input_name = graph->input(i).name();
|
|
auto iter = shape_infos.find(input_name);
|
|
if (iter != shape_infos.end()) {
|
|
auto tensor_type_proto =
|
|
graph->mutable_input(i)->mutable_type()->mutable_tensor_type();
|
|
tensor_type_proto->clear_shape();
|
|
auto shape = tensor_type_proto->mutable_shape();
|
|
for (auto& dim : iter->second) {
|
|
shape->add_dim()->set_dim_value(dim);
|
|
}
|
|
}
|
|
}
|
|
|
|
try {
|
|
shape_inference::InferShapes(*(model_proto.get()));
|
|
} catch (const std::exception& e) {
|
|
P2OLogger(true) << "[ERROR] Failed to reinfer shape for this model."
|
|
<< std::endl;
|
|
P2OLogger(true) << e.what() << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantReshape>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantUnsqueeze>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FusePaddleConvBias>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FuseUnsqueezeConv2dSqueeze>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::EliminateNonTranspose>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::FuseConstantCast>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::ReplaceMulToIdentity>();
|
|
ONNX_NAMESPACE::optimization::Optimizer::passes
|
|
.registerPass<ONNX_NAMESPACE::optimization::ReplaceAddToIdentity>();
|
|
|
|
auto optimized_model_proto = ONNX_NAMESPACE::optimization::Optimize(
|
|
*(model_proto.get()), option.passes);
|
|
std::string optimized_model_str;
|
|
if (!optimized_model_proto.SerializeToString(&optimized_model_str)) {
|
|
P2OLogger(true) << "Failed to serialize the optimized model protobuf."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
|
|
std::fstream out(optimized_model_path, std::ios::out | std::ios::binary);
|
|
if (!out) {
|
|
P2OLogger(true) << "Failed to write the optimized model to disk at "
|
|
<< optimized_model_path << "." << std::endl;
|
|
return false;
|
|
}
|
|
out << optimized_model_str;
|
|
out.close();
|
|
return true;
|
|
}
|
|
|
|
bool Paddle2ONNXFP32ToFP16(const std::string& model_path,
|
|
const std::string& converted_model_path) {
|
|
std::ifstream fin(model_path, std::ios::in | std::ios::binary);
|
|
if (!fin.is_open()) {
|
|
P2OLogger(true)
|
|
<< "Failed to read model file: " << model_path
|
|
<< ", please make sure your model file or file path is valid."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
std::string contents;
|
|
fin.seekg(0, std::ios::end);
|
|
contents.clear();
|
|
contents.resize(fin.tellg());
|
|
fin.seekg(0, std::ios::beg);
|
|
fin.read(&(contents.at(0)), contents.size());
|
|
fin.close();
|
|
|
|
char* out_model_ptr = nullptr;
|
|
int size = 0;
|
|
ConvertFP32ToFP16(contents.c_str(), contents.size(), &out_model_ptr, &size);
|
|
std::string onnx_proto(out_model_ptr, out_model_ptr + size);
|
|
|
|
std::fstream out(converted_model_path, std::ios::out | std::ios::binary);
|
|
if (!out) {
|
|
P2OLogger(true) << "Failed to write the optimized model to disk at "
|
|
<< converted_model_path << "." << std::endl;
|
|
return false;
|
|
}
|
|
out << onnx_proto;
|
|
out.close();
|
|
return true;
|
|
}
|
|
|
|
} // namespace optimization
|
|
} // namespace ONNX_NAMESPACE
|