// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle2onnx/optimizer/paddle2onnx_optimizer.h" #include #include #include "onnxoptimizer/optimize.h" #include "paddle2onnx/optimizer/eliminate_non_transpose.h" #include "paddle2onnx/optimizer/fuse_constant_cast.h" #include "paddle2onnx/optimizer/fuse_constant_reshape.h" #include "paddle2onnx/optimizer/fuse_constant_unsqueeze.h" #include "paddle2onnx/optimizer/fuse_paddle_conv_bias.h" #include "paddle2onnx/optimizer/fuse_unsqueeze_conv2d_squeeze.h" #include "paddle2onnx/optimizer/replace_add_to_identity.h" #include "paddle2onnx/optimizer/replace_mul_to_identity.h" #include "paddle2onnx/utils/utils.h" #include "paddle2onnx/converter.h" namespace ONNX_NAMESPACE { namespace optimization { ONNX_NAMESPACE::ModelProto OptimizeOnnxModel( const ONNX_NAMESPACE::ModelProto& model_proto) { OptimizerOption option; option.passes.clear(); option.passes.push_back("eliminate_identity"); option.passes.push_back("eliminate_deadend"); auto optimized_model_proto = ONNX_NAMESPACE::optimization::Optimize(model_proto, option.passes); // reinfer shape for this onnx model auto graph = optimized_model_proto.mutable_graph(); // clear all the type info of outputs auto output_size = graph->output_size(); for (size_t i = 0; i < output_size; ++i) { graph->mutable_output(i)->clear_type(); } try { shape_inference::InferShapes(optimized_model_proto); } catch (const std::exception& e) { P2OLogger(true) << "[ERROR] Failed to reinfer shape for this model." << std::endl; P2OLogger(true) << e.what() << std::endl; } return optimized_model_proto; } std::shared_ptr LoadModelFromFile( const std::string& file_path) { auto model_proto = std::make_shared(); std::ifstream fin(file_path, std::ios::in | std::ios::binary); if (!fin.is_open()) { P2OLogger(true) << "Failed to read model file: " << file_path << ", please make sure your model file or file path is valid." << std::endl; return model_proto; } std::string contents; fin.seekg(0, std::ios::end); contents.clear(); contents.resize(fin.tellg()); fin.seekg(0, std::ios::beg); fin.read(&(contents.at(0)), contents.size()); fin.close(); if (!model_proto->ParseFromString(contents)) { P2OLogger(true) << "Failed to load ONNX model from file." << std::endl; return model_proto; } return model_proto; } bool OptimizePaddle2ONNX(const std::string& model_path, const std::string& optimized_model_path, const OptimizerOption& option) { auto model_proto = LoadModelFromFile(model_path); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); auto optimized_model_proto = ONNX_NAMESPACE::optimization::Optimize( *(model_proto.get()), option.passes); std::string optimized_model_str; if (!optimized_model_proto.SerializeToString(&optimized_model_str)) { P2OLogger(true) << "Failed to serialize the optimized model protobuf." << std::endl; return false; } std::fstream out(optimized_model_path, std::ios::out | std::ios::binary); if (!out) { P2OLogger(true) << "Failed to write the optimized model to disk at " << optimized_model_path << "." << std::endl; return false; } out << optimized_model_str; out.close(); return true; } bool OptimizePaddle2ONNX( const std::string& model_path, const std::string& optimized_model_path, const std::map>& shape_infos, const OptimizerOption& option) { auto model_proto = LoadModelFromFile(model_path); if (shape_infos.size() > 0) { // reinfer shape for this onnx model auto graph = model_proto->mutable_graph(); // clear all the type info of outputs auto output_size = graph->output_size(); for (size_t i = 0; i < output_size; ++i) { graph->mutable_output(i)->clear_type(); } // reset type info of inputs auto input_size = graph->input_size(); for (size_t i = 0; i < input_size; ++i) { auto input_name = graph->input(i).name(); auto iter = shape_infos.find(input_name); if (iter != shape_infos.end()) { auto tensor_type_proto = graph->mutable_input(i)->mutable_type()->mutable_tensor_type(); tensor_type_proto->clear_shape(); auto shape = tensor_type_proto->mutable_shape(); for (auto& dim : iter->second) { shape->add_dim()->set_dim_value(dim); } } } try { shape_inference::InferShapes(*(model_proto.get())); } catch (const std::exception& e) { P2OLogger(true) << "[ERROR] Failed to reinfer shape for this model." << std::endl; P2OLogger(true) << e.what() << std::endl; return false; } } ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); ONNX_NAMESPACE::optimization::Optimizer::passes .registerPass(); auto optimized_model_proto = ONNX_NAMESPACE::optimization::Optimize( *(model_proto.get()), option.passes); std::string optimized_model_str; if (!optimized_model_proto.SerializeToString(&optimized_model_str)) { P2OLogger(true) << "Failed to serialize the optimized model protobuf." << std::endl; return false; } std::fstream out(optimized_model_path, std::ios::out | std::ios::binary); if (!out) { P2OLogger(true) << "Failed to write the optimized model to disk at " << optimized_model_path << "." << std::endl; return false; } out << optimized_model_str; out.close(); return true; } bool Paddle2ONNXFP32ToFP16(const std::string& model_path, const std::string& converted_model_path) { std::ifstream fin(model_path, std::ios::in | std::ios::binary); if (!fin.is_open()) { P2OLogger(true) << "Failed to read model file: " << model_path << ", please make sure your model file or file path is valid." << std::endl; return false; } std::string contents; fin.seekg(0, std::ios::end); contents.clear(); contents.resize(fin.tellg()); fin.seekg(0, std::ios::beg); fin.read(&(contents.at(0)), contents.size()); fin.close(); char* out_model_ptr = nullptr; int size = 0; ConvertFP32ToFP16(contents.c_str(), contents.size(), &out_model_ptr, &size); std::string onnx_proto(out_model_ptr, out_model_ptr + size); std::fstream out(converted_model_path, std::ios::out | std::ios::binary); if (!out) { P2OLogger(true) << "Failed to write the optimized model to disk at " << converted_model_path << "." << std::endl; return false; } out << onnx_proto; out.close(); return true; } } // namespace optimization } // namespace ONNX_NAMESPACE