Files
FastDeploy/paddle2onnx/mapper/nn/softmax_with_cross_entropy.cc
Jason 6343b0db47 [Build] Support build with source code of Paddle2ONNX (#1559)
* Add notes for tensors

* Optimize some apis

* move some warnings

* Support build with Paddle2ONNX

* Add protobuf support

* Fix compile on mac

* add clearn package script

* Add paddle2onnx code

* remove submodule

* Add onnx ocde

* remove softlink

* add onnx code

* fix error

* Add cmake file

* fix patchelf

* update paddle2onnx

* Delete .gitmodules

---------

Co-authored-by: PaddleCI <paddle_ci@example.com>
Co-authored-by: pangyoki <pangyoki@126.com>
Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
2023-03-17 10:03:22 +08:00

127 lines
5.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle2onnx/mapper/nn/softmax_with_cross_entropy.h"
namespace paddle2onnx {
REGISTER_MAPPER(softmax_with_cross_entropy, SoftmaxCrossEntropyLossMapper)
int32_t SoftmaxCrossEntropyLossMapper::GetMinOpset(bool verbose) {
auto logits = GetInput("Logits");
std::vector<int64_t> logits_shape = logits[0].shape;
if (logits_shape.size() < 2) {
Error() << "SoftmaxCrossEntropyLoss in onnx not support 1D logits."
<< std::endl;
return -1;
}
Logger(verbose, 12) << RequireOpset(12) << std::endl;
return 12;
}
void SoftmaxCrossEntropyLossMapper::Opset12() {
auto logits = GetInput("Logits");
auto labels = GetInput("Label");
auto loss = GetOutput("Loss");
auto softmax = GetOutput("Softmax");
std::vector<int64_t> logits_shape = logits[0].shape;
auto dim = logits[0].Rank();
if (axis_ < 0) {
axis_ += dim;
}
if (soft_label_) {
std::vector<int64_t> split;
split.resize(logits_shape[axis_], 1);
std::vector<int64_t> axes_val = {axis_};
std::string axes_node =
helper_->Constant(GetOnnxDtype(P2ODataType::INT64), axes_val);
if (axis_ == dim - 1) {
auto logsoftmax_node = helper_->MakeNode("LogSoftmax", {logits[0].name});
AddAttribute(logsoftmax_node, "axis", axis_);
helper_->MakeNode("Exp", {logsoftmax_node->output(0)}, {softmax[0].name});
auto mul_result = helper_->MakeNode(
"Mul", {logsoftmax_node->output(0), labels[0].name});
if (helper_->GetOpsetVersion() < 13) {
auto reducesum_node =
helper_->MakeNode("ReduceSum", {mul_result->output(0)});
AddAttribute(reducesum_node, "axes", axes_val);
helper_->MakeNode("Neg", {reducesum_node->output(0)}, {loss[0].name});
} else {
auto reducesum_node =
helper_->MakeNode("ReduceSum", {mul_result->output(0), axes_node});
helper_->MakeNode("Neg", {reducesum_node->output(0)}, {loss[0].name});
}
} else {
auto perm = Arange(0, dim);
perm[dim - 1] = axis_;
perm[axis_] = dim - 1;
auto output = helper_->Transpose(logits[0].name, perm);
auto logsoftmax_node = helper_->MakeNode("LogSoftmax", {output});
AddAttribute(logsoftmax_node, "axis", int64_t(-1));
auto transpose_logsoftmax_node =
helper_->Transpose(logsoftmax_node->output(0), perm);
helper_->MakeNode("Exp", {transpose_logsoftmax_node}, {softmax[0].name});
auto mul_result =
helper_->MakeNode("Mul", {transpose_logsoftmax_node, labels[0].name});
if (helper_->GetOpsetVersion() < 13) {
auto reducesum_node =
helper_->MakeNode("ReduceSum", {mul_result->output(0)});
AddAttribute(reducesum_node, "axes", axes_val);
helper_->MakeNode("Neg", {reducesum_node->output(0)}, {loss[0].name});
} else {
auto reducesum_node =
helper_->MakeNode("ReduceSum", {mul_result->output(0), axes_node});
helper_->MakeNode("Neg", {reducesum_node->output(0)}, {loss[0].name});
}
}
} else {
if (axis_ == 1) {
auto squeeze_node = helper_->Squeeze(labels[0].name, {axis_});
auto node = helper_->MakeNode("SoftmaxCrossEntropyLoss",
{logits[0].name, squeeze_node}, 2);
AddAttribute(node, "ignore_index", ignore_index_);
AddAttribute(node, "reduction", "none");
auto loss_node =
helper_->Unsqueeze(node->output(0), loss[0].name, {axis_});
// onnx output is log(softmax), but paddle output is softmax
helper_->MakeNode("Exp", {node->output(1)}, {softmax[0].name});
} else {
std::vector<int64_t> perm = Arange(0, dim);
perm[1] = axis_;
perm[axis_] = 1;
auto transpose_logits = helper_->MakeNode("Transpose", {logits[0].name});
AddAttribute(transpose_logits, "perm", perm);
auto transpose_labels = helper_->MakeNode("Transpose", {labels[0].name});
AddAttribute(transpose_labels, "perm", perm);
auto squeeze_labels = helper_->Squeeze(transpose_labels->output(0), {1});
auto node =
helper_->MakeNode("SoftmaxCrossEntropyLoss",
{transpose_logits->output(0), squeeze_labels}, 2);
AddAttribute(node, "ignore_index", ignore_index_);
AddAttribute(node, "reduction", "none");
auto unsqueeze_node = helper_->Unsqueeze(node->output(0), {1});
auto revert_transpose_logits =
helper_->MakeNode("Transpose", {unsqueeze_node}, {loss[0].name});
AddAttribute(revert_transpose_logits, "perm", perm);
auto revert_transpose_softmax =
helper_->MakeNode("Transpose", {node->output(1)});
AddAttribute(revert_transpose_softmax, "perm", perm);
// onnx output is log(softmax), but paddle output is softmax
helper_->MakeNode("Exp", {revert_transpose_softmax->output(0)},
{softmax[0].name});
}
}
}
} // namespace paddle2onnx