// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle2onnx/mapper/nn/softmax_with_cross_entropy.h" namespace paddle2onnx { REGISTER_MAPPER(softmax_with_cross_entropy, SoftmaxCrossEntropyLossMapper) int32_t SoftmaxCrossEntropyLossMapper::GetMinOpset(bool verbose) { auto logits = GetInput("Logits"); std::vector logits_shape = logits[0].shape; if (logits_shape.size() < 2) { Error() << "SoftmaxCrossEntropyLoss in onnx not support 1D logits." << std::endl; return -1; } Logger(verbose, 12) << RequireOpset(12) << std::endl; return 12; } void SoftmaxCrossEntropyLossMapper::Opset12() { auto logits = GetInput("Logits"); auto labels = GetInput("Label"); auto loss = GetOutput("Loss"); auto softmax = GetOutput("Softmax"); std::vector logits_shape = logits[0].shape; auto dim = logits[0].Rank(); if (axis_ < 0) { axis_ += dim; } if (soft_label_) { std::vector split; split.resize(logits_shape[axis_], 1); std::vector axes_val = {axis_}; std::string axes_node = helper_->Constant(GetOnnxDtype(P2ODataType::INT64), axes_val); if (axis_ == dim - 1) { auto logsoftmax_node = helper_->MakeNode("LogSoftmax", {logits[0].name}); AddAttribute(logsoftmax_node, "axis", axis_); helper_->MakeNode("Exp", {logsoftmax_node->output(0)}, {softmax[0].name}); auto mul_result = helper_->MakeNode( "Mul", {logsoftmax_node->output(0), labels[0].name}); if (helper_->GetOpsetVersion() < 13) { auto reducesum_node = helper_->MakeNode("ReduceSum", {mul_result->output(0)}); AddAttribute(reducesum_node, "axes", axes_val); helper_->MakeNode("Neg", {reducesum_node->output(0)}, {loss[0].name}); } else { auto reducesum_node = helper_->MakeNode("ReduceSum", {mul_result->output(0), axes_node}); helper_->MakeNode("Neg", {reducesum_node->output(0)}, {loss[0].name}); } } else { auto perm = Arange(0, dim); perm[dim - 1] = axis_; perm[axis_] = dim - 1; auto output = helper_->Transpose(logits[0].name, perm); auto logsoftmax_node = helper_->MakeNode("LogSoftmax", {output}); AddAttribute(logsoftmax_node, "axis", int64_t(-1)); auto transpose_logsoftmax_node = helper_->Transpose(logsoftmax_node->output(0), perm); helper_->MakeNode("Exp", {transpose_logsoftmax_node}, {softmax[0].name}); auto mul_result = helper_->MakeNode("Mul", {transpose_logsoftmax_node, labels[0].name}); if (helper_->GetOpsetVersion() < 13) { auto reducesum_node = helper_->MakeNode("ReduceSum", {mul_result->output(0)}); AddAttribute(reducesum_node, "axes", axes_val); helper_->MakeNode("Neg", {reducesum_node->output(0)}, {loss[0].name}); } else { auto reducesum_node = helper_->MakeNode("ReduceSum", {mul_result->output(0), axes_node}); helper_->MakeNode("Neg", {reducesum_node->output(0)}, {loss[0].name}); } } } else { if (axis_ == 1) { auto squeeze_node = helper_->Squeeze(labels[0].name, {axis_}); auto node = helper_->MakeNode("SoftmaxCrossEntropyLoss", {logits[0].name, squeeze_node}, 2); AddAttribute(node, "ignore_index", ignore_index_); AddAttribute(node, "reduction", "none"); auto loss_node = helper_->Unsqueeze(node->output(0), loss[0].name, {axis_}); // onnx output is log(softmax), but paddle output is softmax helper_->MakeNode("Exp", {node->output(1)}, {softmax[0].name}); } else { std::vector perm = Arange(0, dim); perm[1] = axis_; perm[axis_] = 1; auto transpose_logits = helper_->MakeNode("Transpose", {logits[0].name}); AddAttribute(transpose_logits, "perm", perm); auto transpose_labels = helper_->MakeNode("Transpose", {labels[0].name}); AddAttribute(transpose_labels, "perm", perm); auto squeeze_labels = helper_->Squeeze(transpose_labels->output(0), {1}); auto node = helper_->MakeNode("SoftmaxCrossEntropyLoss", {transpose_logits->output(0), squeeze_labels}, 2); AddAttribute(node, "ignore_index", ignore_index_); AddAttribute(node, "reduction", "none"); auto unsqueeze_node = helper_->Unsqueeze(node->output(0), {1}); auto revert_transpose_logits = helper_->MakeNode("Transpose", {unsqueeze_node}, {loss[0].name}); AddAttribute(revert_transpose_logits, "perm", perm); auto revert_transpose_softmax = helper_->MakeNode("Transpose", {node->output(1)}); AddAttribute(revert_transpose_softmax, "perm", perm); // onnx output is log(softmax), but paddle output is softmax helper_->MakeNode("Exp", {revert_transpose_softmax->output(0)}, {softmax[0].name}); } } } } // namespace paddle2onnx