Files
FastDeploy/fastdeploy/vision/ocr/ppocr/ppocr_pybind.cc
huangjianhui 6c4a08e416 [Other] PPOCR models support model clone function (#1072)
* Refactor PaddleSeg with preprocessor && postprocessor

* Fix bugs

* Delete redundancy code

* Modify by comments

* Refactor according to comments

* Add batch evaluation

* Add single test script

* Add ppliteseg single test script && fix eval(raise) error

* fix bug

* Fix evaluation segmentation.py batch predict

* Fix segmentation evaluation bug

* Fix evaluation segmentation bugs

* Update segmentation result docs

* Update old predict api and DisableNormalizeAndPermute

* Update resize segmentation label map with cv::INTER_NEAREST

* Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg

* Add multi thread demo

* Add python model clone function

* Add multi thread python && C++ example

* Fix bug

* Update python && cpp multi_thread examples

* Add cpp && python directory

* Add README.md for examples

* Delete redundant code

* Create README_CN.md

* Rename README_CN.md to README.md

* Update README.md

* Update README.md

* Update VERSION_NUMBER

* Update requirements.txt

* Update README.md

* update version in doc:

* [Serving]Update Dockerfile (#1037)

Update Dockerfile

* Add license notice for RVM onnx model file (#1060)

* [Model] Add GPL-3.0 license (#1065)

Add GPL-3.0 license

* PPOCR model support model clone

* Update README.md

* Update PPOCRv2 && PPOCRv3 clone code

* Update PPOCR python __init__

* Add multi thread ocr example code

* Update README.md

* Update README.md

* Update ResNet50_vd_infer multi process code

* Add PPOCR multi process && thread example

* Update README.md

* Update README.md

* Update multi-thread docs

Co-authored-by: Jason <jiangjiajun@baidu.com>
Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
Co-authored-by: heliqi <1101791222@qq.com>
Co-authored-by: WJJ1995 <wjjisloser@163.com>
2023-01-17 15:16:41 +08:00

84 lines
3.4 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <pybind11/stl.h>
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPPOCRv3(pybind11::module& m) {
// PPOCRv3
pybind11::class_<pipeline::PPOCRv3, FastDeployModel>(
m, "PPOCRv3")
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
fastdeploy::vision::ocr::Classifier*,
fastdeploy::vision::ocr::Recognizer*>())
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
fastdeploy::vision::ocr::Recognizer*>())
.def_property("cls_batch_size", &pipeline::PPOCRv3::GetClsBatchSize, &pipeline::PPOCRv3::SetClsBatchSize)
.def_property("rec_batch_size", &pipeline::PPOCRv3::GetRecBatchSize, &pipeline::PPOCRv3::SetRecBatchSize)
.def("clone", [](pipeline::PPOCRv3& self) {
return self.Clone();
})
.def("predict", [](pipeline::PPOCRv3& self,
pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::OCRResult res;
self.Predict(&mat, &res);
return res;
})
.def("batch_predict", [](pipeline::PPOCRv3& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::OCRResult> results;
self.BatchPredict(images, &results);
return results;
});
}
void BindPPOCRv2(pybind11::module& m) {
// PPOCRv2
pybind11::class_<pipeline::PPOCRv2, FastDeployModel>(
m, "PPOCRv2")
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
fastdeploy::vision::ocr::Classifier*,
fastdeploy::vision::ocr::Recognizer*>())
.def(pybind11::init<fastdeploy::vision::ocr::DBDetector*,
fastdeploy::vision::ocr::Recognizer*>())
.def_property("cls_batch_size", &pipeline::PPOCRv2::GetClsBatchSize, &pipeline::PPOCRv2::SetClsBatchSize)
.def_property("rec_batch_size", &pipeline::PPOCRv2::GetRecBatchSize, &pipeline::PPOCRv2::SetRecBatchSize)
.def("clone", [](pipeline::PPOCRv2& self) {
return self.Clone();
})
.def("predict", [](pipeline::PPOCRv2& self,
pybind11::array& data) {
auto mat = PyArrayToCvMat(data);
vision::OCRResult res;
self.Predict(&mat, &res);
return res;
})
.def("batch_predict", [](pipeline::PPOCRv2& self, std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i]));
}
std::vector<vision::OCRResult> results;
self.BatchPredict(images, &results);
return results;
});
}
} // namespace fastdeploy