// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "fastdeploy/pybind/main.h" namespace fastdeploy { void BindPPOCRv3(pybind11::module& m) { // PPOCRv3 pybind11::class_( m, "PPOCRv3") .def(pybind11::init()) .def(pybind11::init()) .def_property("cls_batch_size", &pipeline::PPOCRv3::GetClsBatchSize, &pipeline::PPOCRv3::SetClsBatchSize) .def_property("rec_batch_size", &pipeline::PPOCRv3::GetRecBatchSize, &pipeline::PPOCRv3::SetRecBatchSize) .def("clone", [](pipeline::PPOCRv3& self) { return self.Clone(); }) .def("predict", [](pipeline::PPOCRv3& self, pybind11::array& data) { auto mat = PyArrayToCvMat(data); vision::OCRResult res; self.Predict(&mat, &res); return res; }) .def("batch_predict", [](pipeline::PPOCRv3& self, std::vector& data) { std::vector images; for (size_t i = 0; i < data.size(); ++i) { images.push_back(PyArrayToCvMat(data[i])); } std::vector results; self.BatchPredict(images, &results); return results; }); } void BindPPOCRv2(pybind11::module& m) { // PPOCRv2 pybind11::class_( m, "PPOCRv2") .def(pybind11::init()) .def(pybind11::init()) .def_property("cls_batch_size", &pipeline::PPOCRv2::GetClsBatchSize, &pipeline::PPOCRv2::SetClsBatchSize) .def_property("rec_batch_size", &pipeline::PPOCRv2::GetRecBatchSize, &pipeline::PPOCRv2::SetRecBatchSize) .def("clone", [](pipeline::PPOCRv2& self) { return self.Clone(); }) .def("predict", [](pipeline::PPOCRv2& self, pybind11::array& data) { auto mat = PyArrayToCvMat(data); vision::OCRResult res; self.Predict(&mat, &res); return res; }) .def("batch_predict", [](pipeline::PPOCRv2& self, std::vector& data) { std::vector images; for (size_t i = 0; i < data.size(); ++i) { images.push_back(PyArrayToCvMat(data[i])); } std::vector results; self.BatchPredict(images, &results); return results; }); } } // namespace fastdeploy