Files
FastDeploy/fastdeploy/vision/facedet/contrib/scrfd.cc
Zheng_Bicheng dc13eb7049 [RKNPU2] Update quantitative model (#879)
* 对RKNPU2后端进行修改,当模型为非量化模型时,不在NPU执行normalize操作,当模型为量化模型时,在NUP上执行normalize操作

* 更新RKNPU2框架,输出数据的数据类型统一返回fp32类型

* 更新scrfd,拆分disable_normalize和disable_permute

* 更新scrfd代码,支持量化

* 更新scrfd python example代码

* 更新模型转换代码,支持量化模型

* 更新文档

* 按照要求修改

* 按照要求修改

* 修正模型转换文档

* 更新一下转换脚本
2022-12-19 13:58:43 +08:00

382 lines
13 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/facedet/contrib/scrfd.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
void SCRFD::LetterBox(Mat* mat, const std::vector<int>& size,
const std::vector<float>& color, bool _auto,
bool scale_fill, bool scale_up, int stride) {
float scale =
std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
if (!scale_up) {
scale = std::min(scale, 1.0f);
}
int resize_h = int(round(mat->Height() * scale));
int resize_w = int(round(mat->Width() * scale));
int pad_w = size[0] - resize_w;
int pad_h = size[1] - resize_h;
if (_auto) {
pad_h = pad_h % stride;
pad_w = pad_w % stride;
} else if (scale_fill) {
pad_h = 0;
pad_w = 0;
resize_h = size[1];
resize_w = size[0];
}
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, color);
}
}
SCRFD::SCRFD(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
valid_rknpu_backends = {Backend::RKNPU2};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool SCRFD::Initialize() {
// parameters for preprocess
use_kps = true;
size = {640, 640};
padding_value = {0.0, 0.0, 0.0};
is_mini_pad = false;
is_no_pad = false;
is_scale_up = false;
stride = 32;
downsample_strides = {8, 16, 32};
num_anchors = 2;
landmarks_per_face = 5;
center_points_is_update_ = false;
max_nms = 30000;
// num_outputs = use_kps ? 9 : 6;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
// Check if the input shape is dynamic after Runtime already initialized,
// Note that, We need to force is_mini_pad 'false' to keep static
// shape after padding (LetterBox) when the is_dynamic_shape is 'false'.
is_dynamic_input_ = false;
auto shape = InputInfoOfRuntime(0).shape;
for (int i = 0; i < shape.size(); ++i) {
// if height or width is dynamic
if (i >= 2 && shape[i] <= 0) {
is_dynamic_input_ = true;
break;
}
}
if (!is_dynamic_input_) {
is_mini_pad = false;
}
return true;
}
bool SCRFD::Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
size[0] * 1.0f / static_cast<float>(mat->Width()));
#ifndef __ANDROID__
// Because of the low CPU performance on the Android device,
// we decided to hide this extra resize. It won't make much
// difference to the final result.
if (std::fabs(ratio - 1.0f) > 1e-06) {
int interp = cv::INTER_LINEAR;
if (ratio > 1.0) {
interp = cv::INTER_LINEAR;
}
int resize_h = int(mat->Height() * ratio);
int resize_w = int(mat->Width() * ratio);
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
}
#endif
// scrfd's preprocess steps
// 1. letterbox
// 2. BGR->RGB
// 3. HWC->CHW
SCRFD::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad,
is_scale_up, stride);
BGR2RGB::Run(mat);
if (!disable_normalize_) {
// Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
// std::vector<float>(mat->Channels(), 1.0));
// Compute `result = mat * alpha + beta` directly by channel
// Original Repo/tools/scrfd.py: cv2.dnn.blobFromImage(img, 1.0/128,
// input_size, (127.5, 127.5, 127.5), swapRB=True)
std::vector<float> alpha = {1.f / 128.f, 1.f / 128.f, 1.f / 128.f};
std::vector<float> beta = {-127.5f / 128.f, -127.5f / 128.f, -127.5f / 128.f};
Convert::Run(mat, alpha, beta);
}
if(!disable_permute_){
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
}
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w
return true;
}
void SCRFD::GeneratePoints() {
if (center_points_is_update_ && !is_dynamic_input_) {
return;
}
// 8, 16, 32
for (auto local_stride : downsample_strides) {
unsigned int num_grid_w = size[0] / local_stride;
unsigned int num_grid_h = size[1] / local_stride;
// y
for (unsigned int i = 0; i < num_grid_h; ++i) {
// x
for (unsigned int j = 0; j < num_grid_w; ++j) {
// num_anchors, col major
for (unsigned int k = 0; k < num_anchors; ++k) {
SCRFDPoint point;
point.cx = static_cast<float>(j);
point.cy = static_cast<float>(i);
center_points_[local_stride].push_back(point);
}
}
}
}
center_points_is_update_ = true;
}
bool SCRFD::Postprocess(
std::vector<FDTensor>& infer_result, FaceDetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold) {
// number of downsample_strides
int fmc = downsample_strides.size();
// scrfd has 6,9,10,15 output tensors
FDASSERT((infer_result.size() == 9 || infer_result.size() == 6 ||
infer_result.size() == 10 || infer_result.size() == 15),
"The default number of output tensor must be 6, 9, 10, or 15 "
"according to scrfd.");
FDASSERT((fmc == 3 || fmc == 5), "The fmc must be 3 or 5");
FDASSERT((infer_result.at(0).shape[0] == 1), "Only support batch =1 now.");
for (int i = 0; i < fmc; ++i) {
if (infer_result.at(i).dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
}
int total_num_boxes = 0;
// compute the reserve space.
for (int f = 0; f < fmc; ++f) {
total_num_boxes += infer_result.at(f).shape[1];
};
GeneratePoints();
result->Clear();
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
if (!is_scale_up) {
scale = std::min(scale, 1.0f);
}
float pad_h = (out_h - ipt_h * scale) / 2.0f;
float pad_w = (out_w - ipt_w * scale) / 2.0f;
if (is_mini_pad) {
pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
}
// must be setup landmarks_per_face before reserve
if (use_kps) {
result->landmarks_per_face = landmarks_per_face;
} else {
// force landmarks_per_face = 0, if use_kps has been set as 'false'.
result->landmarks_per_face = 0;
}
result->Reserve(total_num_boxes);
unsigned int count = 0;
// loop each stride
for (int f = 0; f < fmc; ++f) {
float* score_ptr = static_cast<float*>(infer_result.at(f).Data());
float* bbox_ptr = static_cast<float*>(infer_result.at(f + fmc).Data());
const unsigned int num_points = infer_result.at(f).shape[1];
int current_stride = downsample_strides[f];
auto& stride_points = center_points_[current_stride];
// loop each anchor
for (unsigned int i = 0; i < num_points; ++i) {
const float cls_conf = score_ptr[i];
if (cls_conf < conf_threshold) continue; // filter
auto& point = stride_points.at(i);
const float cx = point.cx; // cx
const float cy = point.cy; // cy
// bbox
const float* offsets = bbox_ptr + i * 4;
float l = offsets[0]; // left
float t = offsets[1]; // top
float r = offsets[2]; // right
float b = offsets[3]; // bottom
float x1 = ((cx - l) * static_cast<float>(current_stride) -
static_cast<float>(pad_w)) /
scale; // cx - l x1
float y1 = ((cy - t) * static_cast<float>(current_stride) -
static_cast<float>(pad_h)) /
scale; // cy - t y1
float x2 = ((cx + r) * static_cast<float>(current_stride) -
static_cast<float>(pad_w)) /
scale; // cx + r x2
float y2 = ((cy + b) * static_cast<float>(current_stride) -
static_cast<float>(pad_h)) /
scale; // cy + b y2
result->boxes.emplace_back(std::array<float, 4>{x1, y1, x2, y2});
result->scores.push_back(cls_conf);
if (use_kps) {
float* landmarks_ptr =
static_cast<float*>(infer_result.at(f + 2 * fmc).Data());
// landmarks
const float* kps_offsets = landmarks_ptr + i * (landmarks_per_face * 2);
for (unsigned int j = 0; j < landmarks_per_face * 2; j += 2) {
float kps_l = kps_offsets[j];
float kps_t = kps_offsets[j + 1];
float kps_x = ((cx + kps_l) * static_cast<float>(current_stride) -
static_cast<float>(pad_w)) /
scale; // cx + l x
float kps_y = ((cy + kps_t) * static_cast<float>(current_stride) -
static_cast<float>(pad_h)) /
scale; // cy + t y
result->landmarks.emplace_back(std::array<float, 2>{kps_x, kps_y});
}
}
count += 1; // limit boxes for nms.
if (count > max_nms) {
break;
}
}
}
// fetch original image shape
FDASSERT((iter_ipt != im_info.end()),
"Cannot find input_shape from im_info.");
if (result->boxes.size() == 0) {
return true;
}
utils::NMS(result, nms_iou_threshold);
// scale and clip box
for (size_t i = 0; i < result->boxes.size(); ++i) {
result->boxes[i][0] = std::max(result->boxes[i][0], 0.0f);
result->boxes[i][1] = std::max(result->boxes[i][1], 0.0f);
result->boxes[i][2] = std::max(result->boxes[i][2], 0.0f);
result->boxes[i][3] = std::max(result->boxes[i][3], 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
// scale and clip landmarks
if (use_kps) {
for (size_t i = 0; i < result->landmarks.size(); ++i) {
result->landmarks[i][0] = std::max(result->landmarks[i][0], 0.0f);
result->landmarks[i][1] = std::max(result->landmarks[i][1], 0.0f);
result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f);
result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f);
}
}
return true;
}
bool SCRFD::Predict(cv::Mat* im, FaceDetectionResult* result,
float conf_threshold, float nms_iou_threshold) {
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
std::map<std::string, std::array<float, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
im_info["output_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors, result, im_info, conf_threshold,
nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
void SCRFD::DisableNormalize() {
disable_normalize_=true;
}
void SCRFD::DisablePermute() {
disable_permute_=true;
}
} // namespace facedet
} // namespace vision
} // namespace fastdeploy