// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/facedet/contrib/scrfd.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace facedet { void SCRFD::LetterBox(Mat* mat, const std::vector& size, const std::vector& color, bool _auto, bool scale_fill, bool scale_up, int stride) { float scale = std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width()); if (!scale_up) { scale = std::min(scale, 1.0f); } int resize_h = int(round(mat->Height() * scale)); int resize_w = int(round(mat->Width() * scale)); int pad_w = size[0] - resize_w; int pad_h = size[1] - resize_h; if (_auto) { pad_h = pad_h % stride; pad_w = pad_w % stride; } else if (scale_fill) { pad_h = 0; pad_w = 0; resize_h = size[1]; resize_w = size[0]; } if (resize_h != mat->Height() || resize_w != mat->Width()) { Resize::Run(mat, resize_w, resize_h); } if (pad_h > 0 || pad_w > 0) { float half_h = pad_h * 1.0 / 2; int top = int(round(half_h - 0.1)); int bottom = int(round(half_h + 0.1)); float half_w = pad_w * 1.0 / 2; int left = int(round(half_w - 0.1)); int right = int(round(half_w + 0.1)); Pad::Run(mat, top, bottom, left, right, color); } } SCRFD::SCRFD(const std::string& model_file, const std::string& params_file, const RuntimeOption& custom_option, const ModelFormat& model_format) { if (model_format == ModelFormat::ONNX) { valid_cpu_backends = {Backend::ORT}; valid_gpu_backends = {Backend::ORT, Backend::TRT}; } else { valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; valid_rknpu_backends = {Backend::RKNPU2}; } runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; initialized = Initialize(); } bool SCRFD::Initialize() { // parameters for preprocess use_kps = true; size = {640, 640}; padding_value = {0.0, 0.0, 0.0}; is_mini_pad = false; is_no_pad = false; is_scale_up = false; stride = 32; downsample_strides = {8, 16, 32}; num_anchors = 2; landmarks_per_face = 5; center_points_is_update_ = false; max_nms = 30000; // num_outputs = use_kps ? 9 : 6; if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } // Check if the input shape is dynamic after Runtime already initialized, // Note that, We need to force is_mini_pad 'false' to keep static // shape after padding (LetterBox) when the is_dynamic_shape is 'false'. is_dynamic_input_ = false; auto shape = InputInfoOfRuntime(0).shape; for (int i = 0; i < shape.size(); ++i) { // if height or width is dynamic if (i >= 2 && shape[i] <= 0) { is_dynamic_input_ = true; break; } } if (!is_dynamic_input_) { is_mini_pad = false; } return true; } bool SCRFD::Preprocess(Mat* mat, FDTensor* output, std::map>* im_info) { float ratio = std::min(size[1] * 1.0f / static_cast(mat->Height()), size[0] * 1.0f / static_cast(mat->Width())); #ifndef __ANDROID__ // Because of the low CPU performance on the Android device, // we decided to hide this extra resize. It won't make much // difference to the final result. if (std::fabs(ratio - 1.0f) > 1e-06) { int interp = cv::INTER_LINEAR; if (ratio > 1.0) { interp = cv::INTER_LINEAR; } int resize_h = int(mat->Height() * ratio); int resize_w = int(mat->Width() * ratio); Resize::Run(mat, resize_w, resize_h, -1, -1, interp); } #endif // scrfd's preprocess steps // 1. letterbox // 2. BGR->RGB // 3. HWC->CHW SCRFD::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up, stride); BGR2RGB::Run(mat); if (!disable_normalize_) { // Normalize::Run(mat, std::vector(mat->Channels(), 0.0), // std::vector(mat->Channels(), 1.0)); // Compute `result = mat * alpha + beta` directly by channel // Original Repo/tools/scrfd.py: cv2.dnn.blobFromImage(img, 1.0/128, // input_size, (127.5, 127.5, 127.5), swapRB=True) std::vector alpha = {1.f / 128.f, 1.f / 128.f, 1.f / 128.f}; std::vector beta = {-127.5f / 128.f, -127.5f / 128.f, -127.5f / 128.f}; Convert::Run(mat, alpha, beta); } if(!disable_permute_){ HWC2CHW::Run(mat); Cast::Run(mat, "float"); } // Record output shape of preprocessed image (*im_info)["output_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; mat->ShareWithTensor(output); output->shape.insert(output->shape.begin(), 1); // reshape to n, c, h, w return true; } void SCRFD::GeneratePoints() { if (center_points_is_update_ && !is_dynamic_input_) { return; } // 8, 16, 32 for (auto local_stride : downsample_strides) { unsigned int num_grid_w = size[0] / local_stride; unsigned int num_grid_h = size[1] / local_stride; // y for (unsigned int i = 0; i < num_grid_h; ++i) { // x for (unsigned int j = 0; j < num_grid_w; ++j) { // num_anchors, col major for (unsigned int k = 0; k < num_anchors; ++k) { SCRFDPoint point; point.cx = static_cast(j); point.cy = static_cast(i); center_points_[local_stride].push_back(point); } } } } center_points_is_update_ = true; } bool SCRFD::Postprocess( std::vector& infer_result, FaceDetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold) { // number of downsample_strides int fmc = downsample_strides.size(); // scrfd has 6,9,10,15 output tensors FDASSERT((infer_result.size() == 9 || infer_result.size() == 6 || infer_result.size() == 10 || infer_result.size() == 15), "The default number of output tensor must be 6, 9, 10, or 15 " "according to scrfd."); FDASSERT((fmc == 3 || fmc == 5), "The fmc must be 3 or 5"); FDASSERT((infer_result.at(0).shape[0] == 1), "Only support batch =1 now."); for (int i = 0; i < fmc; ++i) { if (infer_result.at(i).dtype != FDDataType::FP32) { FDERROR << "Only support post process with float32 data." << std::endl; return false; } } int total_num_boxes = 0; // compute the reserve space. for (int f = 0; f < fmc; ++f) { total_num_boxes += infer_result.at(f).shape[1]; }; GeneratePoints(); result->Clear(); // scale the boxes to the origin image shape auto iter_out = im_info.find("output_shape"); auto iter_ipt = im_info.find("input_shape"); FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(), "Cannot find input_shape or output_shape from im_info."); float out_h = iter_out->second[0]; float out_w = iter_out->second[1]; float ipt_h = iter_ipt->second[0]; float ipt_w = iter_ipt->second[1]; float scale = std::min(out_h / ipt_h, out_w / ipt_w); if (!is_scale_up) { scale = std::min(scale, 1.0f); } float pad_h = (out_h - ipt_h * scale) / 2.0f; float pad_w = (out_w - ipt_w * scale) / 2.0f; if (is_mini_pad) { pad_h = static_cast(static_cast(pad_h) % stride); pad_w = static_cast(static_cast(pad_w) % stride); } // must be setup landmarks_per_face before reserve if (use_kps) { result->landmarks_per_face = landmarks_per_face; } else { // force landmarks_per_face = 0, if use_kps has been set as 'false'. result->landmarks_per_face = 0; } result->Reserve(total_num_boxes); unsigned int count = 0; // loop each stride for (int f = 0; f < fmc; ++f) { float* score_ptr = static_cast(infer_result.at(f).Data()); float* bbox_ptr = static_cast(infer_result.at(f + fmc).Data()); const unsigned int num_points = infer_result.at(f).shape[1]; int current_stride = downsample_strides[f]; auto& stride_points = center_points_[current_stride]; // loop each anchor for (unsigned int i = 0; i < num_points; ++i) { const float cls_conf = score_ptr[i]; if (cls_conf < conf_threshold) continue; // filter auto& point = stride_points.at(i); const float cx = point.cx; // cx const float cy = point.cy; // cy // bbox const float* offsets = bbox_ptr + i * 4; float l = offsets[0]; // left float t = offsets[1]; // top float r = offsets[2]; // right float b = offsets[3]; // bottom float x1 = ((cx - l) * static_cast(current_stride) - static_cast(pad_w)) / scale; // cx - l x1 float y1 = ((cy - t) * static_cast(current_stride) - static_cast(pad_h)) / scale; // cy - t y1 float x2 = ((cx + r) * static_cast(current_stride) - static_cast(pad_w)) / scale; // cx + r x2 float y2 = ((cy + b) * static_cast(current_stride) - static_cast(pad_h)) / scale; // cy + b y2 result->boxes.emplace_back(std::array{x1, y1, x2, y2}); result->scores.push_back(cls_conf); if (use_kps) { float* landmarks_ptr = static_cast(infer_result.at(f + 2 * fmc).Data()); // landmarks const float* kps_offsets = landmarks_ptr + i * (landmarks_per_face * 2); for (unsigned int j = 0; j < landmarks_per_face * 2; j += 2) { float kps_l = kps_offsets[j]; float kps_t = kps_offsets[j + 1]; float kps_x = ((cx + kps_l) * static_cast(current_stride) - static_cast(pad_w)) / scale; // cx + l x float kps_y = ((cy + kps_t) * static_cast(current_stride) - static_cast(pad_h)) / scale; // cy + t y result->landmarks.emplace_back(std::array{kps_x, kps_y}); } } count += 1; // limit boxes for nms. if (count > max_nms) { break; } } } // fetch original image shape FDASSERT((iter_ipt != im_info.end()), "Cannot find input_shape from im_info."); if (result->boxes.size() == 0) { return true; } utils::NMS(result, nms_iou_threshold); // scale and clip box for (size_t i = 0; i < result->boxes.size(); ++i) { result->boxes[i][0] = std::max(result->boxes[i][0], 0.0f); result->boxes[i][1] = std::max(result->boxes[i][1], 0.0f); result->boxes[i][2] = std::max(result->boxes[i][2], 0.0f); result->boxes[i][3] = std::max(result->boxes[i][3], 0.0f); result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f); result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f); result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f); result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f); } // scale and clip landmarks if (use_kps) { for (size_t i = 0; i < result->landmarks.size(); ++i) { result->landmarks[i][0] = std::max(result->landmarks[i][0], 0.0f); result->landmarks[i][1] = std::max(result->landmarks[i][1], 0.0f); result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f); result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f); } } return true; } bool SCRFD::Predict(cv::Mat* im, FaceDetectionResult* result, float conf_threshold, float nms_iou_threshold) { Mat mat(*im); std::vector input_tensors(1); std::map> im_info; // Record the shape of image and the shape of preprocessed image im_info["input_shape"] = {static_cast(mat.Height()), static_cast(mat.Width())}; im_info["output_shape"] = {static_cast(mat.Height()), static_cast(mat.Width())}; if (!Preprocess(&mat, &input_tensors[0], &im_info)) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } input_tensors[0].name = InputInfoOfRuntime(0).name; std::vector output_tensors; if (!Infer(input_tensors, &output_tensors)) { FDERROR << "Failed to inference." << std::endl; return false; } if (!Postprocess(output_tensors, result, im_info, conf_threshold, nms_iou_threshold)) { FDERROR << "Failed to post process." << std::endl; return false; } return true; } void SCRFD::DisableNormalize() { disable_normalize_=true; } void SCRFD::DisablePermute() { disable_permute_=true; } } // namespace facedet } // namespace vision } // namespace fastdeploy