Files
FastDeploy/fastdeploy/vision/detection/contrib/rknpu2/rkyolo.cc
Zheng_Bicheng 95beb2bbf6 [RKNPU2] RKYOLO Support FP32 return value (#898)
* RKNPU2 Backend兼容其他模型的量化
fd_tensor正式移除zp和scale的量化参数

* 更新FP32返回值的RKYOLO

* 更新rkyolov5支持fp32格式

* 更新rkyolov5支持fp32格式

* 更新YOLOv5速度文档

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2022-12-19 10:03:18 +08:00

83 lines
2.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/rknpu2/rkyolo.h"
namespace fastdeploy {
namespace vision {
namespace detection {
RKYOLO::RKYOLO(const std::string& model_file,
const fastdeploy::RuntimeOption& custom_option,
const fastdeploy::ModelFormat& model_format) {
if (model_format == ModelFormat::RKNN) {
valid_cpu_backends = {};
valid_gpu_backends = {};
valid_rknpu_backends = {Backend::RKNPU2};
} else {
FDERROR << "RKYOLO Only Support run in RKNPU2" << std::endl;
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
initialized = Initialize();
}
bool RKYOLO::Initialize() {
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
auto size = GetPreprocessor().GetSize();
GetPostprocessor().SetHeightAndWeight(size[0], size[1]);
return true;
}
bool RKYOLO::Predict(const cv::Mat& im, DetectionResult* result) {
std::vector<DetectionResult> results;
if (!BatchPredict({im}, &results)) {
return false;
}
*result = std::move(results[0]);
return true;
}
bool RKYOLO::BatchPredict(const std::vector<cv::Mat>& images,
std::vector<DetectionResult>* results) {
std::vector<FDMat> fd_images = WrapMat(images);
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
FDERROR << "Failed to preprocess the input image." << std::endl;
return false;
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
FDERROR << "Failed to inference by runtime." << std::endl;
return false;
}
auto pad_hw_values_ = preprocessor_.GetPadHWValues();
postprocessor_.SetPadHWValues(preprocessor_.GetPadHWValues());
postprocessor_.SetScale(preprocessor_.GetScale());
if (!postprocessor_.Run(reused_output_tensors_, results)) {
FDERROR << "Failed to postprocess the inference results by runtime."
<< std::endl;
return false;
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy