mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* RKNPU2 Backend兼容其他模型的量化 fd_tensor正式移除zp和scale的量化参数 * 更新FP32返回值的RKYOLO * 更新rkyolov5支持fp32格式 * 更新rkyolov5支持fp32格式 * 更新YOLOv5速度文档 Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
83 lines
2.7 KiB
C++
83 lines
2.7 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/vision/detection/contrib/rknpu2/rkyolo.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
RKYOLO::RKYOLO(const std::string& model_file,
|
|
const fastdeploy::RuntimeOption& custom_option,
|
|
const fastdeploy::ModelFormat& model_format) {
|
|
if (model_format == ModelFormat::RKNN) {
|
|
valid_cpu_backends = {};
|
|
valid_gpu_backends = {};
|
|
valid_rknpu_backends = {Backend::RKNPU2};
|
|
} else {
|
|
FDERROR << "RKYOLO Only Support run in RKNPU2" << std::endl;
|
|
}
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool RKYOLO::Initialize() {
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
auto size = GetPreprocessor().GetSize();
|
|
GetPostprocessor().SetHeightAndWeight(size[0], size[1]);
|
|
return true;
|
|
}
|
|
|
|
bool RKYOLO::Predict(const cv::Mat& im, DetectionResult* result) {
|
|
std::vector<DetectionResult> results;
|
|
if (!BatchPredict({im}, &results)) {
|
|
return false;
|
|
}
|
|
*result = std::move(results[0]);
|
|
return true;
|
|
}
|
|
|
|
bool RKYOLO::BatchPredict(const std::vector<cv::Mat>& images,
|
|
std::vector<DetectionResult>* results) {
|
|
std::vector<FDMat> fd_images = WrapMat(images);
|
|
|
|
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
|
|
FDERROR << "Failed to preprocess the input image." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
|
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
|
FDERROR << "Failed to inference by runtime." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
auto pad_hw_values_ = preprocessor_.GetPadHWValues();
|
|
postprocessor_.SetPadHWValues(preprocessor_.GetPadHWValues());
|
|
postprocessor_.SetScale(preprocessor_.GetScale());
|
|
if (!postprocessor_.Run(reused_output_tensors_, results)) {
|
|
FDERROR << "Failed to postprocess the inference results by runtime."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|