// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. //NOLINT // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/detection/contrib/rknpu2/rkyolo.h" namespace fastdeploy { namespace vision { namespace detection { RKYOLO::RKYOLO(const std::string& model_file, const fastdeploy::RuntimeOption& custom_option, const fastdeploy::ModelFormat& model_format) { if (model_format == ModelFormat::RKNN) { valid_cpu_backends = {}; valid_gpu_backends = {}; valid_rknpu_backends = {Backend::RKNPU2}; } else { FDERROR << "RKYOLO Only Support run in RKNPU2" << std::endl; } runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; initialized = Initialize(); } bool RKYOLO::Initialize() { if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } auto size = GetPreprocessor().GetSize(); GetPostprocessor().SetHeightAndWeight(size[0], size[1]); return true; } bool RKYOLO::Predict(const cv::Mat& im, DetectionResult* result) { std::vector results; if (!BatchPredict({im}, &results)) { return false; } *result = std::move(results[0]); return true; } bool RKYOLO::BatchPredict(const std::vector& images, std::vector* results) { std::vector fd_images = WrapMat(images); if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) { FDERROR << "Failed to preprocess the input image." << std::endl; return false; } reused_input_tensors_[0].name = InputInfoOfRuntime(0).name; if (!Infer(reused_input_tensors_, &reused_output_tensors_)) { FDERROR << "Failed to inference by runtime." << std::endl; return false; } auto pad_hw_values_ = preprocessor_.GetPadHWValues(); postprocessor_.SetPadHWValues(preprocessor_.GetPadHWValues()); postprocessor_.SetScale(preprocessor_.GetScale()); if (!postprocessor_.Run(reused_output_tensors_, results)) { FDERROR << "Failed to postprocess the inference results by runtime." << std::endl; return false; } return true; } } // namespace detection } // namespace vision } // namespace fastdeploy