mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* model done, CLA fix * remove letter_box and ConvertAndPermute, use resize hwc2chw and convert in preprocess * remove useless values in preprocess * remove useless values in preprocess * fix reviewed problem * fix reviewed problem pybind * fix reviewed problem pybind * postprocess fix * add test_fastestdet.py, coco_val2017_500 fixed done, ready to review * fix reviewed problem * python/.../fastestdet.py * fix infer.cc, preprocess, python/fastestdet.py * fix examples/python/infer.py
133 lines
4.9 KiB
C++
133 lines
4.9 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace detection {
|
|
|
|
FastestDetPostprocessor::FastestDetPostprocessor() {
|
|
conf_threshold_ = 0.65;
|
|
nms_threshold_ = 0.45;
|
|
}
|
|
float FastestDetPostprocessor::Sigmoid(float x) {
|
|
return 1.0f / (1.0f + exp(-x));
|
|
}
|
|
|
|
float FastestDetPostprocessor::Tanh(float x) {
|
|
return 2.0f / (1.0f + exp(-2 * x)) - 1;
|
|
}
|
|
|
|
bool FastestDetPostprocessor::Run(
|
|
const std::vector<FDTensor> &tensors, std::vector<DetectionResult> *results,
|
|
const std::vector<std::map<std::string, std::array<float, 2>>> &ims_info) {
|
|
int batch = 1;
|
|
|
|
results->resize(batch);
|
|
|
|
for (size_t bs = 0; bs < batch; ++bs) {
|
|
|
|
(*results)[bs].Clear();
|
|
// output (1,85,22,22) CHW
|
|
const float* output = reinterpret_cast<const float*>(tensors[0].Data()) + bs * tensors[0].shape[1] * tensors[0].shape[2] * tensors[0].shape[3];
|
|
int output_h = tensors[0].shape[2]; // out map height
|
|
int output_w = tensors[0].shape[3]; // out map weight
|
|
auto iter_out = ims_info[bs].find("output_shape");
|
|
auto iter_ipt = ims_info[bs].find("input_shape");
|
|
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
float ipt_h = iter_ipt->second[0];
|
|
float ipt_w = iter_ipt->second[1];
|
|
|
|
// handle output boxes from out map
|
|
for (int h = 0; h < output_h; h++) {
|
|
for (int w = 0; w < output_w; w++) {
|
|
// object score
|
|
int obj_score_index = (h * output_w) + w;
|
|
float obj_score = output[obj_score_index];
|
|
|
|
// find max class
|
|
int category = 0;
|
|
float max_score = 0.0f;
|
|
int class_num = tensors[0].shape[1]-5;
|
|
for (size_t i = 0; i < class_num; i++) {
|
|
obj_score_index =((5 + i) * output_h * output_w) + (h * output_w) + w;
|
|
float cls_score = output[obj_score_index];
|
|
if (cls_score > max_score) {
|
|
max_score = cls_score;
|
|
category = i;
|
|
}
|
|
}
|
|
float score = pow(max_score, 0.4) * pow(obj_score, 0.6);
|
|
|
|
// score threshold
|
|
if (score <= conf_threshold_) {
|
|
continue;
|
|
}
|
|
if (score > conf_threshold_) {
|
|
// handle box x y w h
|
|
int x_offset_index = (1 * output_h * output_w) + (h * output_w) + w;
|
|
int y_offset_index = (2 * output_h * output_w) + (h * output_w) + w;
|
|
int box_width_index = (3 * output_h * output_w) + (h * output_w) + w;
|
|
int box_height_index = (4 * output_h * output_w) + (h * output_w) + w;
|
|
|
|
float x_offset = Tanh(output[x_offset_index]);
|
|
float y_offset = Tanh(output[y_offset_index]);
|
|
float box_width = Sigmoid(output[box_width_index]);
|
|
float box_height = Sigmoid(output[box_height_index]);
|
|
|
|
float cx = (w + x_offset) / output_w;
|
|
float cy = (h + y_offset) / output_h;
|
|
|
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
|
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
|
|
cx - box_width / 2.0f,
|
|
cy - box_height / 2.0f,
|
|
cx + box_width / 2.0f,
|
|
cy + box_height / 2.0f});
|
|
(*results)[bs].label_ids.push_back(category);
|
|
(*results)[bs].scores.push_back(score);
|
|
}
|
|
}
|
|
}
|
|
if ((*results)[bs].boxes.size() == 0) {
|
|
return true;
|
|
}
|
|
|
|
// scale boxes to origin shape
|
|
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
|
|
(*results)[bs].boxes[i][0] = ((*results)[bs].boxes[i][0]) * ipt_w;
|
|
(*results)[bs].boxes[i][1] = ((*results)[bs].boxes[i][1]) * ipt_h;
|
|
(*results)[bs].boxes[i][2] = ((*results)[bs].boxes[i][2]) * ipt_w;
|
|
(*results)[bs].boxes[i][3] = ((*results)[bs].boxes[i][3]) * ipt_h;
|
|
}
|
|
//NMS
|
|
utils::NMS(&((*results)[bs]), nms_threshold_);
|
|
//clip box
|
|
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
|
|
(*results)[bs].boxes[i][0] = std::max((*results)[bs].boxes[i][0], 0.0f);
|
|
(*results)[bs].boxes[i][1] = std::max((*results)[bs].boxes[i][1], 0.0f);
|
|
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w);
|
|
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|