// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/detection/contrib/fastestdet/postprocessor.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace detection { FastestDetPostprocessor::FastestDetPostprocessor() { conf_threshold_ = 0.65; nms_threshold_ = 0.45; } float FastestDetPostprocessor::Sigmoid(float x) { return 1.0f / (1.0f + exp(-x)); } float FastestDetPostprocessor::Tanh(float x) { return 2.0f / (1.0f + exp(-2 * x)) - 1; } bool FastestDetPostprocessor::Run( const std::vector &tensors, std::vector *results, const std::vector>> &ims_info) { int batch = 1; results->resize(batch); for (size_t bs = 0; bs < batch; ++bs) { (*results)[bs].Clear(); // output (1,85,22,22) CHW const float* output = reinterpret_cast(tensors[0].Data()) + bs * tensors[0].shape[1] * tensors[0].shape[2] * tensors[0].shape[3]; int output_h = tensors[0].shape[2]; // out map height int output_w = tensors[0].shape[3]; // out map weight auto iter_out = ims_info[bs].find("output_shape"); auto iter_ipt = ims_info[bs].find("input_shape"); FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(), "Cannot find input_shape or output_shape from im_info."); float ipt_h = iter_ipt->second[0]; float ipt_w = iter_ipt->second[1]; // handle output boxes from out map for (int h = 0; h < output_h; h++) { for (int w = 0; w < output_w; w++) { // object score int obj_score_index = (h * output_w) + w; float obj_score = output[obj_score_index]; // find max class int category = 0; float max_score = 0.0f; int class_num = tensors[0].shape[1]-5; for (size_t i = 0; i < class_num; i++) { obj_score_index =((5 + i) * output_h * output_w) + (h * output_w) + w; float cls_score = output[obj_score_index]; if (cls_score > max_score) { max_score = cls_score; category = i; } } float score = pow(max_score, 0.4) * pow(obj_score, 0.6); // score threshold if (score <= conf_threshold_) { continue; } if (score > conf_threshold_) { // handle box x y w h int x_offset_index = (1 * output_h * output_w) + (h * output_w) + w; int y_offset_index = (2 * output_h * output_w) + (h * output_w) + w; int box_width_index = (3 * output_h * output_w) + (h * output_w) + w; int box_height_index = (4 * output_h * output_w) + (h * output_w) + w; float x_offset = Tanh(output[x_offset_index]); float y_offset = Tanh(output[y_offset_index]); float box_width = Sigmoid(output[box_width_index]); float box_height = Sigmoid(output[box_height_index]); float cx = (w + x_offset) / output_w; float cy = (h + y_offset) / output_h; // convert from [x, y, w, h] to [x1, y1, x2, y2] (*results)[bs].boxes.emplace_back(std::array{ cx - box_width / 2.0f, cy - box_height / 2.0f, cx + box_width / 2.0f, cy + box_height / 2.0f}); (*results)[bs].label_ids.push_back(category); (*results)[bs].scores.push_back(score); } } } if ((*results)[bs].boxes.size() == 0) { return true; } // scale boxes to origin shape for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) { (*results)[bs].boxes[i][0] = ((*results)[bs].boxes[i][0]) * ipt_w; (*results)[bs].boxes[i][1] = ((*results)[bs].boxes[i][1]) * ipt_h; (*results)[bs].boxes[i][2] = ((*results)[bs].boxes[i][2]) * ipt_w; (*results)[bs].boxes[i][3] = ((*results)[bs].boxes[i][3]) * ipt_h; } //NMS utils::NMS(&((*results)[bs]), nms_threshold_); //clip box for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) { (*results)[bs].boxes[i][0] = std::max((*results)[bs].boxes[i][0], 0.0f); (*results)[bs].boxes[i][1] = std::max((*results)[bs].boxes[i][1], 0.0f); (*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w); (*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h); } } return true; } } // namespace detection } // namespace vision } // namespace fastdeploy