mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
3.4 KiB
3.4 KiB
English | 简体中文
PP-Tracking C++ Deployment Example
This directory provides examples that infer.cc
fast finishes the deployment of PP-Tracking on CPU/GPU and GPU accelerated by TensorRT.
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Download the precompiled deployment library and samples code according to your development environment. Refer to FastDeploy Precompiled Library
Taking the PP-Tracking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the`FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download PP-Tracking model files and test videos
wget https://bj.bcebos.com/paddlehub/fastdeploy/fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
tar -xvf fairmot_hrnetv2_w18_dlafpn_30e_576x320.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/person.mp4
# CPU inference
./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 0
# GPU inference
./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 1
# TensorRT Inference on GPU
./infer_demo fairmot_hrnetv2_w18_dlafpn_30e_576x320 person.mp4 2
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
PP-Tracking C++ Interface
PPTracking Class
fastdeploy::vision::tracking::PPTracking(
const string& model_file,
const string& params_file = "",
const string& config_file,
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
PP-Tracking model loading and initialization, among which model_file is the exported Paddle model format.
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path
- config_file(str): Inference deployment configuration file
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. Paddle format by default
Predict Function
PPTracking::Predict(cv::Mat* im, MOTResult* result)
Model prediction interface. Input images and output detection results.
Parameter
- im: Input images in HWC or BGR format
- result: Detection results, including detection box, tracking id, confidence of each box, and object class id. Refer to visual model prediction results for the description of MOTResult