mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-08 01:50:27 +08:00

* [Docs] rename ppseg kunlun -> kunlunxin * [Docs] rename ppseg fastdeploy kunlun docs -> kunlunxin
76 lines
2.9 KiB
Markdown
76 lines
2.9 KiB
Markdown
# PaddleSeg语义分割模型高性能全场景部署方案-FastDeploy
|
||
|
||
## 1. FastDeploy介绍
|
||
**[⚡️FastDeploy](https://github.com/PaddlePaddle/FastDeploy)**是一款**全场景**、**易用灵活**、**极致高效**的AI推理部署工具,支持**云边端**部署。使用FastDeploy可以简单高效的在X86 CPU、NVIDIA GPU、飞腾CPU、ARM CPU、Intel GPU、昆仑、昇腾、瑞芯微、晶晨、算能等10+款硬件上对PaddleSeg语义分割模型进行快速部署,并且支持Paddle Inference、Paddle Lite、TensorRT、OpenVINO、ONNXRuntime、RKNPU2、SOPHGO等多种推理后端。
|
||
|
||
## 2. 硬件支持列表
|
||
|
||
|硬件类型|该硬件是否支持|使用指南|Python|C++|
|
||
|:---:|:---:|:---:|:---:|:---:|
|
||
|X86 CPU|✅|[链接](cpu-gpu)|✅|✅|
|
||
|NVIDIA GPU|✅|[链接](cpu-gpu)|✅|✅|
|
||
|飞腾CPU|✅|[链接](cpu-gpu)|✅|✅|
|
||
|ARM CPU|✅|[链接](cpu-gpu)|✅|✅|
|
||
|Intel GPU(集成显卡)|✅|[链接](cpu-gpu)|✅|✅|
|
||
|Intel GPU(独立显卡)|✅|[链接](cpu-gpu)|✅|✅|
|
||
|昆仑|✅|[链接](kunlunxin)|✅|✅|
|
||
|昇腾|✅|[链接](ascend)|✅|✅|
|
||
|瑞芯微|✅|[链接](rockchip)|✅|✅|
|
||
|晶晨|✅|[链接](amlogic)|--|✅|
|
||
|算能|✅|[链接](sophgo)|✅|✅|
|
||
|
||
## 3. 详细使用文档
|
||
- X86 CPU
|
||
- [部署模型准备](cpu-gpu)
|
||
- [Python部署示例](cpu-gpu/python/)
|
||
- [C++部署示例](cpu-gpu/cpp/)
|
||
- NVIDIA GPU
|
||
- [部署模型准备](cpu-gpu)
|
||
- [Python部署示例](cpu-gpu/python/)
|
||
- [C++部署示例](cpu-gpu/cpp/)
|
||
- 飞腾CPU
|
||
- [部署模型准备](cpu-gpu)
|
||
- [Python部署示例](cpu-gpu/python/)
|
||
- [C++部署示例](cpu-gpu/cpp/)
|
||
- ARM CPU
|
||
- [部署模型准备](cpu-gpu)
|
||
- [Python部署示例](cpu-gpu/python/)
|
||
- [C++部署示例](cpu-gpu/cpp/)
|
||
- Intel GPU
|
||
- [部署模型准备](cpu-gpu)
|
||
- [Python部署示例](cpu-gpu/python/)
|
||
- [C++部署示例](cpu-gpu/cpp/)
|
||
- 昆仑 XPU
|
||
- [部署模型准备](kunlunxin)
|
||
- [Python部署示例](kunlunxin/python/)
|
||
- [C++部署示例](kunlunxin/cpp/)
|
||
- 昇腾 Ascend
|
||
- [部署模型准备](ascend)
|
||
- [Python部署示例](ascend/python/)
|
||
- [C++部署示例](ascend/cpp/)
|
||
- 瑞芯微 Rockchip
|
||
- [部署模型准备](rockchip/)
|
||
- [Python部署示例](rockchip/rknpu2/)
|
||
- [C++部署示例](rockchip/rknpu2/)
|
||
- 晶晨 Amlogic
|
||
- [部署模型准备](amlogic/a311d/)
|
||
- [C++部署示例](amlogic/a311d/cpp/)
|
||
- 算能 Sophgo
|
||
- [部署模型准备](sophgo/)
|
||
- [Python部署示例](sophgo/python/)
|
||
- [C++部署示例](sophgo/cpp/)
|
||
|
||
## 4. 更多部署方式
|
||
|
||
- [Android ARM CPU部署](android)
|
||
- [服务化Serving部署](serving)
|
||
- [web部署](web)
|
||
- [模型自动化压缩工具](quantize)
|
||
|
||
## 5. 常见问题
|
||
|
||
遇到问题可查看常见问题集合,搜索FastDeploy issue,*或给FastDeploy提交[issue](https://github.com/PaddlePaddle/FastDeploy/issues)*:
|
||
|
||
[常见问题集合](https://github.com/PaddlePaddle/FastDeploy/tree/develop/docs/cn/faq)
|
||
[FastDeploy issues](https://github.com/PaddlePaddle/FastDeploy/issues)
|