mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
4.1 KiB
Executable File
4.1 KiB
Executable File
English | 简体中文
RobustVideoMatting supports TRT’s dynamic ONNX export
Environment Dependencies
- python >= 3.5
- pytorch 1.12.0
- onnx 1.10.0
- onnxsim 0.4.8
Step 1: Pull the RobustVideoMatting onnx branch code
git clone -b onnx https://github.com/PeterL1n/RobustVideoMatting.git
cd RobustVideoMatting
Step 2: Remove downsample_ratio dynamic input
Remove the downsample_ratio
input in model/model.py
.
def forward(self, src, r1, r2, r3, r4,
# downsample_ratio: float = 0.25,
segmentation_pass: bool = False):
if torch.onnx.is_in_onnx_export():
# src_sm = CustomOnnxResizeByFactorOp.apply(src, 0.25)
src_sm = self._interpolate(src, scale_factor=0.25)
elif downsample_ratio != 1:
src_sm = self._interpolate(src, scale_factor=0.25)
else:
src_sm = src
f1, f2, f3, f4 = self.backbone(src_sm)
f4 = self.aspp(f4)
hid, *rec = self.decoder(src_sm, f1, f2, f3, f4, r1, r2, r3, r4)
if not segmentation_pass:
fgr_residual, pha = self.project_mat(hid).split([3, 1], dim=-3)
# if torch.onnx.is_in_onnx_export() or downsample_ratio != 1:
if torch.onnx.is_in_onnx_export():
fgr_residual, pha = self.refiner(src, src_sm, fgr_residual, pha, hid)
fgr = fgr_residual + src
fgr = fgr.clamp(0., 1.)
pha = pha.clamp(0., 1.)
return [fgr, pha, *rec]
else:
seg = self.project_seg(hid)
return [seg, *rec]
Step 3: Modify the export ONNX script
Modify export_onnx.py
script to remove the downsample_ratio
input
def export(self):
rec = (torch.zeros([1, 1, 1, 1]).to(self.args.device, self.precision),) * 4
# src = torch.randn(1, 3, 1080, 1920).to(self.args.device, self.precision)
src = torch.randn(1, 3, 1920, 1080).to(self.args.device, self.precision)
# downsample_ratio = torch.tensor([0.25]).to(self.args.device)
dynamic_spatial = {0: 'batch_size', 2: 'height', 3: 'width'}
dynamic_everything = {0: 'batch_size', 1: 'channels', 2: 'height', 3: 'width'}
torch.onnx.export(
self.model,
# (src, *rec, downsample_ratio),
(src, *rec),
self.args.output,
export_params=True,
opset_version=self.args.opset,
do_constant_folding=True,
# input_names=['src', 'r1i', 'r2i', 'r3i', 'r4i', 'downsample_ratio'],
input_names=['src', 'r1i', 'r2i', 'r3i', 'r4i'],
output_names=['fgr', 'pha', 'r1o', 'r2o', 'r3o', 'r4o'],
dynamic_axes={
'src': {0: 'batch_size0', 2: 'height0', 3: 'width0'},
'fgr': {0: 'batch_size1', 2: 'height1', 3: 'width1'},
'pha': {0: 'batch_size2', 2: 'height2', 3: 'width2'},
'r1i': {0: 'batch_size3', 1: 'channels3', 2: 'height3', 3: 'width3'},
'r2i': {0: 'batch_size4', 1: 'channels4', 2: 'height4', 3: 'width4'},
'r3i': {0: 'batch_size5', 1: 'channels5', 2: 'height5', 3: 'width5'},
'r4i': {0: 'batch_size6', 1: 'channels6', 2: 'height6', 3: 'width6'},
'r1o': {0: 'batch_size7', 2: 'height7', 3: 'width7'},
'r2o': {0: 'batch_size8', 2: 'height8', 3: 'width8'},
'r3o': {0: 'batch_size9', 2: 'height9', 3: 'width9'},
'r4o': {0: 'batch_size10', 2: 'height10', 3: 'width10'},
})
Run the following commands
python export_onnx.py \
--model-variant mobilenetv3 \
--checkpoint rvm_mobilenetv3.pth \
--precision float32 \
--opset 12 \
--device cuda \
--output rvm_mobilenetv3.onnx
Note:
- For the dynamic shape of the multi-input ONNX model in trt, if the shapes of x0 and x1 are different, we cannot use height and width but height0 and height1 to differentiate them, otherwise, there will be some mistakes when building engine
Step 4: Simplify with onnxsim
Install onnxsim and simplify the ONNX model exported in step 3
pip install onnxsim
onnxsim rvm_mobilenetv3.onnx rvm_mobilenetv3_trt.onnx
rvm_mobilenetv3_trt.onnx
: The ONNX model in dynamic shape that can run the TRT backend