mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
4.1 KiB
Executable File
4.1 KiB
Executable File
English | 简体中文
MODNet Python Deployment Example
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Install FastDeploy Python whl package. Refer to FastDeploy Python Installation
This directory provides examples that infer.py
fast finishes the deployment of MODNet on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/matting/modnet/python/
# Download modnet model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/modnet_photographic_portrait_matting.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_input.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/matting_bgr.jpg
# CPU inference
python infer.py --model modnet_photographic_portrait_matting.onnx --image matting_input.jpg --bg matting_bgr.jpg --device cpu
# GPU inference
python infer.py --model modnet_photographic_portrait_matting.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu
# TensorRT inference on GPU
python infer.py --model modnet_photographic_portrait_matting.onnx --image matting_input.jpg --bg matting_bgr.jpg --device gpu --use_trt True
The visualized result after running is as follows
MODNet Python Interface
fastdeploy.vision.matting.MODNet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
MODNet model loading and initialization, among which model_file is the exported ONNX model format
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path. No need to set when the model is in ONNX format
- runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
- model_format(ModelFormat): Model format. ONNX format by default
predict function
MODNet.predict(image_data)
Model prediction interface. Input images and output matting results.
Parameter
- image_data(np.ndarray): Input data in HWC or BGR format
Return
Return
fastdeploy.vision.MattingResult
structure. Refer to Vision Model Prediction Results for its description.
Class Member Property
Pre-processing Parameter
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
- size(list[int]): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [256, 256]
- alpha(list[float]): Preprocess normalized alpha, and calculated as
x'=x*alpha+beta
. alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]- beta(list[float]): Preprocess normalized beta, and calculated as
x'=x*alpha+beta
. beta defaults to [-1.f, -1.f, -1.f]- swap_rb(bool): Whether to convert BGR to RGB in pre-processing. Default True