
* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
4.2 KiB
Executable File
English | 简体中文
PP-PicoDet + PP-TinyPose (Pipeline) Python Deployment Example
Before deployment, two steps require confirmation
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Download the precompiled deployment library and samples code according to your development environment. Refer to FastDeploy Precompiled Library
This directory provides the Multi-person keypoint detection in a single image
example that det_keypoint_unite_infer.py
fast finishes the deployment of multi-person detection model PP-PicoDet + PP-TinyPose on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
Attention: For standalone deployment of PP-TinyPose single model, refer to PP-TinyPose Single Model
# Download the deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/keypointdetection/det_keypoint_unite/python
# Download PP-TinyPose model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
tar -xvf PP_PicoDet_V2_S_Pedestrian_320x320_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/000000018491.jpg
# CPU inference
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device cpu
# GPU inference
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device gpu
# TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device gpu --use_trt True
# kunlunxin XPU inference
python det_keypoint_unite_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --det_model_dir PP_PicoDet_V2_S_Pedestrian_320x320_infer --image 000000018491.jpg --device kunlunxin
The visualized result after running is as follows
PPTinyPosePipeline Python Interface
fd.pipeline.PPTinyPose(det_model=None, pptinypose_model=None)
PPTinyPosePipeline model loading and initialization, among which the det_model is the detection model initialized by fd.vision.detection.PicoDet
Refer to Detection Document and pptinypose_model is the detection model initialized by fd.vision.keypointdetection.PPTinyPose
Refer to PP-TinyPose Document
Parameter
- det_model(str): Initialized detection model
- pptinypose_model(str): Initialized PP-TinyPose model
predict function
PPTinyPosePipeline.predict(input_image)
Model prediction interface. Input images and output keypoint detection results.
Parameter
- input_image(np.ndarray): Input data in HWC or BGR format
Return
Return
fastdeploy.vision.KeyPointDetectionResult
structure. Refer to Vision Model Prediction Results for the description of the structure.
Class Member Property
Post-processing Parameter
- detection_model_score_threshold(bool): Score threshold of the Detectin model for filtering detection boxes before entering the PP-TinyPose model