
* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
3.4 KiB
Executable File
English | 简体中文
AnimeGAN C++ Deployment Example
This directory provides examples that infer.cc
fast finishes the deployment of AnimeGAN on CPU/GPU.
Two steps before deployment
-
- Software and hardware should meet the requirements. Please refer to FastDeploy Environment Requirements
-
- Download the precompiled deployment library and samples code according to your development environment. Refer to FastDeploy Precompiled Library
Taking the AnimeGAN inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.2 or above (x.x.x>=1.0.2) is required to support this model.
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# Download the prepared model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/style_transfer_testimg.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/animegan_v1_hayao_60_v1.0.0.tgz
tar xvfz animegan_v1_hayao_60_v1.0.0.tgz
# CPU inference
./infer_demo --model animegan_v1_hayao_60 --image style_transfer_testimg.jpg --device cpu
# GPU inference
./infer_demo --model animegan_v1_hayao_60 --image style_transfer_testimg.jpg --device gpu
The above command works for Linux or MacOS. For SDK in Windows, refer to
AnimeGAN C++ Interface
AnimeGAN Class
fastdeploy::vision::generation::AnimeGAN(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
AnimeGAN model loading and initialization, among which model_file is the exported Paddle model file and params_file is the parameter file.
Parameter
- model_file(str): Model file path
- params_file(str): Parameter file path
- runtime_option(RuntimeOption): Backend Inference configuration. None by default. (use the default configuration)
- model_format(ModelFormat): Model format. Paddle format by default
Predict Function
bool AnimeGAN::Predict(cv::Mat& image, cv::Mat* result)
Model prediction interface. Input an image and output the style transfer result
Parameter
- image: Input data in HWC or BGR format
- result: Image after style style transfer in BGR format
BatchPredict Function
bool AnimeGAN::BatchPredict(const std::vector<cv::Mat>& images, std::vector<cv::Mat>* results);
Model prediction interface. Input a set of images and output style transfer results.
Parameter
- images: Input data in HWC or BGR format
- results: A set of images after style transfer in BGR format.