Files
FastDeploy/examples/vision/faceid/insightface/rknpu2/python/README.md
Hu Chuqi e2de3f36d3 [Doc] Add English version of some documents (#1221)
* Update README_CN.md

* Create README.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README_CN.md

* Update README_CN.md

* Create README.md

* Update README.md

* Update README_CN.md

* Create README.md

* Update README.md

* Update README_CN.md

* Rename examples/vision/faceid/insightface/rknpu2/cpp/README.md to examples/vision/faceid/insightface/rknpu2/README_EN.md

* Rename README_CN.md to README.md

* Rename README.md to README_EN.md

* Rename README.md to README_CN.md

* Rename README_EN.md to README.md

* Create build.md

* Create environment.md

* Create issues.md

* Update build.md

* Update environment.md

* Update issues.md

* Update build.md

* Update environment.md

* Update issues.md
2023-02-06 11:11:00 +08:00

109 lines
4.8 KiB
Markdown

English | [简体中文](README_CN.md)
# InsightFace Python Deployment Example
FastDeploy supports the deployment of InsightFace models like ArcFace\CosFace\VPL\Partial on RKNPU.
This directoty provides the example that `infer_arcface.py` fast finishes the deployment of InsighFace models like ArcFace on CPU/RKNPU.
Two steps before deployment:
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../../docs/cn/build_and_install/rknpu2.md)
```bash
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/faceid/insightface/python/
# Download ArcFace model files and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
unzip face_demo.zip
# CPU inference
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device cpu
# GPU inference
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device gpu
```
The visualized result is as follows
<div width="700">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
</div>
```bash
Prediction Done!
--- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
--- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
--- [Face 2]:FaceRecognitionResult: [Dim(512), Min(-3.243411), Max(3.875866), Mean(-0.030682)]
Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388
```
## InsightFace Python interface
```python
fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.VPL(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
ArcFace model loading and initialization, among which model_file is the exported ONNX model format
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. ONNX format by default
### predict function
> ```python
> ArcFace.predict(image_data)
> ```
>
> Model prediction interface. Input images and output prediction results
>
> **Parameter**
>
> > * **image_data**(np.ndarray): Input data in HWC or BGR format
> **Return**
>
> > Return the `fastdeploy.vision.FaceRecognitionResult` structure. Refer to [Vision Model Prediction Results](../../../../../../docs/api/vision_results/) for its description
### Class Member Property
#### Pre-processing Parameter
Users can modify the following preprocessing parameters based on actual needs to change the final inference and deployment results.
#### Member Variables of AdaFacePreprocessor
The followings are the member variables of AdaFacePreprocessor
> > * **size**(list[int]): This parameter changes the resize used during preprocessing, containing two integer elements for [width, height] with default value [112, 112]
> > * **alpha**(list[float]): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. Alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]
> > * **beta**(list[float]): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`. beta defaults to [-1.f, -1.f, -1.f]
#### Member Variables of AdaFacePostprocessor
The followings are the member variables of AdaFacePostprocessor
> > * **l2_normalize**(bool): Whether to perform l2 normalization before outputting the face vector. Default false.
## Other Documents
- [InsightFace Model Description](..)
- [InsightFace C++ Deployment](../cpp)
- [Vision Model Prediction Results](../../../../../../docs/api/vision_results/)
- [How to switch the backend engine](../../../../../../docs/cn/faq/how_to_change_backend.md)