mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 09:31:35 +08:00

* Update README_CN.md * Create README.md * Update README.md * Create README_CN.md * Update README.md * Update README_CN.md * Update README_CN.md * Create README.md * Update README.md * Update README_CN.md * Create README.md * Update README.md * Update README_CN.md * Rename examples/vision/faceid/insightface/rknpu2/cpp/README.md to examples/vision/faceid/insightface/rknpu2/README_EN.md * Rename README_CN.md to README.md * Rename README.md to README_EN.md * Rename README.md to README_CN.md * Rename README_EN.md to README.md * Create build.md * Create environment.md * Create issues.md * Update build.md * Update environment.md * Update issues.md * Update build.md * Update environment.md * Update issues.md
109 lines
4.8 KiB
Markdown
109 lines
4.8 KiB
Markdown
English | [简体中文](README_CN.md)
|
|
# InsightFace Python Deployment Example
|
|
|
|
FastDeploy supports the deployment of InsightFace models like ArcFace\CosFace\VPL\Partial on RKNPU.
|
|
|
|
This directoty provides the example that `infer_arcface.py` fast finishes the deployment of InsighFace models like ArcFace on CPU/RKNPU.
|
|
|
|
|
|
Two steps before deployment:
|
|
|
|
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../../docs/cn/build_and_install/rknpu2.md)
|
|
|
|
```bash
|
|
# Download the example code for deployment
|
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
cd examples/vision/faceid/insightface/python/
|
|
|
|
# Download ArcFace model files and test images
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
|
|
unzip face_demo.zip
|
|
|
|
# CPU inference
|
|
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
|
|
--face face_0.jpg \
|
|
--face_positive face_1.jpg \
|
|
--face_negative face_2.jpg \
|
|
--device cpu
|
|
# GPU inference
|
|
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
|
|
--face face_0.jpg \
|
|
--face_positive face_1.jpg \
|
|
--face_negative face_2.jpg \
|
|
--device gpu
|
|
```
|
|
|
|
The visualized result is as follows
|
|
|
|
<div width="700">
|
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
|
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
|
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
|
|
</div>
|
|
|
|
```bash
|
|
Prediction Done!
|
|
--- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
|
|
--- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
|
|
--- [Face 2]:FaceRecognitionResult: [Dim(512), Min(-3.243411), Max(3.875866), Mean(-0.030682)]
|
|
Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388
|
|
|
|
```
|
|
|
|
## InsightFace Python interface
|
|
|
|
```python
|
|
fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
|
fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
|
fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
|
fastdeploy.vision.faceid.VPL(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
|
```
|
|
|
|
ArcFace model loading and initialization, among which model_file is the exported ONNX model format
|
|
|
|
**Parameter**
|
|
|
|
> * **model_file**(str): Model file path
|
|
> * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format
|
|
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
|
> * **model_format**(ModelFormat): Model format. ONNX format by default
|
|
|
|
### predict function
|
|
|
|
> ```python
|
|
> ArcFace.predict(image_data)
|
|
> ```
|
|
>
|
|
> Model prediction interface. Input images and output prediction results
|
|
>
|
|
> **Parameter**
|
|
>
|
|
> > * **image_data**(np.ndarray): Input data in HWC or BGR format
|
|
|
|
> **Return**
|
|
>
|
|
> > Return the `fastdeploy.vision.FaceRecognitionResult` structure. Refer to [Vision Model Prediction Results](../../../../../../docs/api/vision_results/) for its description
|
|
|
|
### Class Member Property
|
|
#### Pre-processing Parameter
|
|
Users can modify the following preprocessing parameters based on actual needs to change the final inference and deployment results.
|
|
|
|
#### Member Variables of AdaFacePreprocessor
|
|
The followings are the member variables of AdaFacePreprocessor
|
|
> > * **size**(list[int]): This parameter changes the resize used during preprocessing, containing two integer elements for [width, height] with default value [112, 112]
|
|
> > * **alpha**(list[float]): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. Alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
|
> > * **beta**(list[float]): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`. beta defaults to [-1.f, -1.f, -1.f]
|
|
|
|
#### Member Variables of AdaFacePostprocessor
|
|
The followings are the member variables of AdaFacePostprocessor
|
|
> > * **l2_normalize**(bool): Whether to perform l2 normalization before outputting the face vector. Default false.
|
|
|
|
|
|
## Other Documents
|
|
|
|
- [InsightFace Model Description](..)
|
|
- [InsightFace C++ Deployment](../cpp)
|
|
- [Vision Model Prediction Results](../../../../../../docs/api/vision_results/)
|
|
- [How to switch the backend engine](../../../../../../docs/cn/faq/how_to_change_backend.md)
|