mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 17:41:52 +08:00

* Update README_CN.md * Create README.md * Update README.md * Create README_CN.md * Update README.md * Update README_CN.md * Update README_CN.md * Create README.md * Update README.md * Update README_CN.md * Create README.md * Update README.md * Update README_CN.md * Rename examples/vision/faceid/insightface/rknpu2/cpp/README.md to examples/vision/faceid/insightface/rknpu2/README_EN.md * Rename README_CN.md to README.md * Rename README.md to README_EN.md * Rename README.md to README_CN.md * Rename README_EN.md to README.md * Create build.md * Create environment.md * Create issues.md * Update build.md * Update environment.md * Update issues.md * Update build.md * Update environment.md * Update issues.md
137 lines
5.9 KiB
Markdown
137 lines
5.9 KiB
Markdown
English | [简体中文](README_CN.md)
|
|
# InsightFace C++ Deployment Example
|
|
|
|
FastDeploy supports the deployment of InsightFace models like ArcFace\CosFace\VPL\Partial_FC on RKNPU.
|
|
|
|
This directoty provides the example that `infer_arcface.cc` fast finishes the deployment of InsighFace models like ArcFace on CPU/RKNPU.
|
|
|
|
|
|
Two steps before deployment:
|
|
|
|
1. Software and hardware should meet the requirements.
|
|
2. Download the precompiled deployment library or deploy FastDeploy repository from scratch according to your development environment.
|
|
|
|
Refer to [RK2 generation NPU deployment library compilation](../../../../../../docs/cn/build_and_install/rknpu2.md) for the above steps
|
|
|
|
The compilation can be completed by executing the following command in this directory.
|
|
|
|
```bash
|
|
mkdir build
|
|
cd build
|
|
# FastDeploy version need >=1.0.3
|
|
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
|
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
|
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
|
make -j
|
|
|
|
# Download the official converted ArcFace model files and test images
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r18.onnx
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
|
|
unzip face_demo.zip
|
|
|
|
# CPU inference
|
|
./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 0
|
|
# RKNPU inference
|
|
./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 1
|
|
```
|
|
|
|
The visualized result is as follows
|
|
|
|
<div width="700">
|
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
|
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
|
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
|
|
</div>
|
|
|
|
The above command works for Linux or MacOS. For SDK in Windows, refer to:
|
|
- [How to use FastDeploy C++ SDK in Windows](../../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
|
|
|
## InsightFace C++ Interface
|
|
|
|
### ArcFace
|
|
|
|
```c++
|
|
fastdeploy::vision::faceid::ArcFace(
|
|
const string& model_file,
|
|
const string& params_file = "",
|
|
const RuntimeOption& runtime_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX)
|
|
```
|
|
|
|
ArcFace model loading and initialization, among which model_file is the exported ONNX model format
|
|
|
|
### CosFace
|
|
|
|
```c++
|
|
fastdeploy::vision::faceid::CosFace(
|
|
const string& model_file,
|
|
const string& params_file = "",
|
|
const RuntimeOption& runtime_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX)
|
|
```
|
|
|
|
CosFace model loading and initialization, among which model_file is the exported ONNX model format
|
|
|
|
### PartialFC
|
|
|
|
```c++
|
|
fastdeploy::vision::faceid::PartialFC(
|
|
const string& model_file,
|
|
const string& params_file = "",
|
|
const RuntimeOption& runtime_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX)
|
|
```
|
|
|
|
PartialFC model loading and initialization, among which model_file is the exported ONNX model format
|
|
|
|
### VPL
|
|
|
|
```c++
|
|
fastdeploy::vision::faceid::VPL(
|
|
const string& model_file,
|
|
const string& params_file = "",
|
|
const RuntimeOption& runtime_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX)
|
|
```
|
|
|
|
VPL model loading and initialization, among which model_file is the exported ONNX model format
|
|
**Parameter**
|
|
|
|
> * **model_file**(str): Model file path
|
|
> * **params_file**(str): Parameter file path. Merely passing an empty string when the model is in ONNX format
|
|
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
|
> * **model_format**(ModelFormat): Model format. ONNX format by default
|
|
|
|
#### Predict function
|
|
|
|
> ```c++
|
|
> ArcFace::Predict(const cv::Mat& im, FaceRecognitionResult* result)
|
|
> ```
|
|
>
|
|
> Model prediction interface. Input images and output detection results
|
|
>
|
|
> **Parameter**
|
|
>
|
|
> > * **im**: Input images in HWC or BGR format
|
|
> > * **result**: Detection results, including detection box and confidence of each box. Refer to [Vision Model Prediction Results] for the description of FaceRecognitionResult(../../../../../../docs/api/vision_results/)
|
|
|
|
### Change pre-processing and post-processing parameters
|
|
Pre-processing and post-processing parameters can be changed by modifying the member variables of InsightFaceRecognitionPostprocessor and InsightFaceRecognitionPreprocessor
|
|
|
|
#### Member variables of InsightFaceRecognitionPreprocessor (preprocessing parameters)
|
|
> > * **size**(vector<int>): This parameter changes the resize during preprocessing, containing two integer elements for [width, height] with default value [112, 112].
|
|
Revise through InsightFaceRecognitionPreprocessor::SetSize(std::vector<int>& size)
|
|
> > * **alpha**(vector<float>): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. Alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5].
|
|
Revise through InsightFaceRecognitionPreprocessor::SetAlpha(std::vector<float>& alpha)
|
|
> > * **beta**(vector<float>): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`. Alpha defaults to [-1.f, -1.f, -1.f],
|
|
Revise through InsightFaceRecognitionPreprocessor::SetBeta(std::vector<float>& beta)
|
|
|
|
#### Member variables of InsightFaceRecognitionPostprocessor(post-processing parameters)
|
|
> > * **l2_normalize**(bool): Whether to perform l2 normalization before outputting the face vector. Default false.
|
|
Revise through InsightFaceRecognitionPostprocessor::SetL2Normalize(bool& l2_normalize)
|
|
|
|
- [Model Description](../../../)
|
|
- [Python Deployemnt](../python)
|
|
- [Vision Model Prediction Results](../../../../../../docs/api/vision_results/README.md)
|
|
- [How to switch the backend engine](../../../../../../docs/cn/faq/how_to_change_backend.md)
|