mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 09:31:35 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * update README * update Readme.md * update Readme.md * update Readme_en.md * update Readme_en.md * Update README_EN.md * Update README_CN.md * Update README_EN.md * Delete README_new.md * Update README_EN.md * Update README.md * Update rknpu2.md * Update README.md * Update README.md * Create README_CN.md * Update README.md * Update README_CN.md * Update README.md * Update README_EN.md --------- Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
114 lines
5.4 KiB
Markdown
114 lines
5.4 KiB
Markdown
English | [简体中文](README_CN.md)
|
||
# InsightFace Python Deployment Example
|
||
This directory provides examples that `infer_xxx.py` fast finishes the deployment of InsighFace, including ArcFace\CosFace\VPL\Partial_FC on CPU/GPU and GPU accelerated by TensorRT.
|
||
|
||
Before deployment, two steps require confirmation
|
||
|
||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
Taking ArcFace as an example, we demonstrate how `infer_arcface.py` fast finishes the deployment of ArcFace on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
|
||
```bash
|
||
# Download the example code for deployment
|
||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||
cd examples/vision/faceid/insightface/python/
|
||
|
||
# Download ArcFace model files and test images
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
|
||
unzip face_demo.zip
|
||
|
||
# CPU inference
|
||
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
|
||
--face face_0.jpg \
|
||
--face_positive face_1.jpg \
|
||
--face_negative face_2.jpg \
|
||
--device cpu
|
||
# GPU inference
|
||
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
|
||
--face face_0.jpg \
|
||
--face_positive face_1.jpg \
|
||
--face_negative face_2.jpg \
|
||
--device gpu
|
||
# TensorRT inference on GPU
|
||
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
|
||
--face face_0.jpg \
|
||
--face_positive face_1.jpg \
|
||
--face_negative face_2.jpg \
|
||
--device gpu \
|
||
--use_trt True
|
||
```
|
||
|
||
The visualized result after running is as follows
|
||
|
||
<div width="700">
|
||
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
|
||
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
|
||
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
|
||
</div>
|
||
|
||
```bash
|
||
Prediction Done!
|
||
--- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
|
||
--- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
|
||
--- [Face 2]:FaceRecognitionResult: [Dim(512), Min(-3.243411), Max(3.875866), Mean(-0.030682)]
|
||
Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388
|
||
|
||
```
|
||
|
||
## InsightFace Python Interface
|
||
|
||
```python
|
||
fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
||
fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
||
fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
||
fastdeploy.vision.faceid.VPL(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
||
```
|
||
|
||
ArcFace model loading and initialization, among which model_file is the exported ONNX model format
|
||
|
||
**Parameter**
|
||
|
||
> * **model_file**(str): Model file path
|
||
> * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format
|
||
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
||
> * **model_format**(ModelFormat): Model format. ONNX format by default
|
||
|
||
### predict function
|
||
|
||
> ```python
|
||
> ArcFace.predict(image_data)
|
||
> ```
|
||
>
|
||
> Model prediction interface. Input images and output detection results.
|
||
>
|
||
> **Parameter**
|
||
>
|
||
> > * **image_data**(np.ndarray): Input data in HWC or BGR format
|
||
|
||
> **Return**
|
||
>
|
||
> > Return `fastdeploy.vision.FaceRecognitionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description.
|
||
|
||
### Class Member Property
|
||
#### Pre-processing Parameter
|
||
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
|
||
|
||
#### Member variables of AdaFacePreprocessor
|
||
Member variables of AdaFacePreprocessor are as follows
|
||
> > * **size**(list[int]): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [112, 112]
|
||
> > * **alpha**(list[float]): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
||
> > * **beta**(list[float]): Preprocess normalized beta, and calculated as `x'=x*alpha+beta`,beta defaults to [-1.f, -1.f, -1.f]
|
||
|
||
#### Member variables of AdaFacePostprocessor
|
||
Member variables of AdaFacePostprocessor are as follows
|
||
> > * **l2_normalize**(bool): Whether to perform l2 normalization before outputting the face vector. Default False.
|
||
|
||
|
||
## Other Documents
|
||
|
||
- [InsightFace Model Description](..)
|
||
- [InsightFace C++ Deployment](../cpp)
|
||
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|
||
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|