mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
126 lines
5.8 KiB
Markdown
Executable File
126 lines
5.8 KiB
Markdown
Executable File
English | [简体中文](README_CN.md)
|
|
# AdaFace Python Deployment Example
|
|
This directory provides examples that `infer_xxx.py` fast finishes the deployment of AdaFace on CPU/GPU and GPU accelerated by TensorRT.
|
|
|
|
Before deployment, two steps require confirmation
|
|
|
|
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
|
|
Taking AdaFace as an example, we demonstrate how `infer.py` fast finishes the deployment of AdaFace on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
|
|
```bash
|
|
# Download the example code for deployment
|
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
cd examples/vision/faceid/adaface/python/
|
|
|
|
# Download AdaFace model files and test images
|
|
# Download test images
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
|
|
unzip face_demo.zip
|
|
|
|
# Run the following code if the model is in Paddle format
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz
|
|
tar zxvf mobilefacenet_adaface.tgz -C ./
|
|
|
|
# CPU inference
|
|
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
|
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
|
--face face_0.jpg \
|
|
--face_positive face_1.jpg \
|
|
--face_negative face_2.jpg \
|
|
--device cpu
|
|
# GPU inference
|
|
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
|
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
|
--face face_0.jpg \
|
|
--face_positive face_1.jpg \
|
|
--face_negative face_2.jpg \
|
|
--device gpu
|
|
# TensorRT inference on GPU
|
|
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
|
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
|
--face face_0.jpg \
|
|
--face_positive face_1.jpg \
|
|
--face_negative face_2.jpg \
|
|
--device gpu \
|
|
--use_trt True
|
|
|
|
# KunlunXin XPU inference
|
|
python infer.py --model mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
|
|
--params_file mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
|
|
--face test_lite_focal_arcface_0.JPG \
|
|
--face_positive test_lite_focal_arcface_1.JPG \
|
|
--face_negative test_lite_focal_arcface_2.JPG \
|
|
--device kunlunxin
|
|
```
|
|
|
|
The visualized result after running is as follows
|
|
|
|
<div width="700">
|
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
|
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
|
|
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
|
|
</div>
|
|
|
|
```bash
|
|
FaceRecognitionResult: [Dim(512), Min(-0.133213), Max(0.148838), Mean(0.000293)]
|
|
FaceRecognitionResult: [Dim(512), Min(-0.102777), Max(0.120130), Mean(0.000615)]
|
|
FaceRecognitionResult: [Dim(512), Min(-0.116685), Max(0.142919), Mean(0.001595)]
|
|
Cosine 01: 0.7483505506964364
|
|
Cosine 02: -0.09605773855893639
|
|
```
|
|
|
|
## AdaFace Python Interface
|
|
|
|
```python
|
|
fastdeploy.vision.faceid.AdaFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
```
|
|
|
|
AdaFace model loading and initialization, among which model_file is the exported ONNX model format or PADDLE static graph format
|
|
|
|
**Parameter**
|
|
|
|
> * **model_file**(str): Model file path
|
|
> * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format
|
|
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
|
> * **model_format**(ModelFormat): Model format. Paddle format by default
|
|
|
|
### predict function
|
|
|
|
> ```python
|
|
> AdaFace.predict(image_data)
|
|
> ```
|
|
>
|
|
> Model prediction interface. Input images and output detection results.
|
|
>
|
|
> **Parameter**
|
|
>
|
|
> > * **image_data**(np.ndarray): Input data in HWC or BGR format
|
|
|
|
> **Return**
|
|
>
|
|
> > Return `fastdeploy.vision.FaceRecognitionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description.
|
|
|
|
### Class Member Property
|
|
#### Pre-processing Parameter
|
|
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
|
|
|
|
#### Member variables of AdaFacePreprocessor
|
|
The member variables of AdaFacePreprocessor are as follows
|
|
> > * **size**(list[int]): This parameter changes the size of the resize during preprocessing, containing two integer elements for [width, height] with default value [112, 112]
|
|
> > * **alpha**(list[float]): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. alpha defaults to [1. / 127.5, 1.f / 127.5, 1. / 127.5]
|
|
> > * **beta**(list[float]): Preprocess normalized alpha, and calculated as `x'=x*alpha+beta`. beta defaults to [-1.f, -1.f, -1.f]
|
|
> > * **swap_rb**(bool): Whether to convert BGR to RGB in pre-processing. Default true
|
|
|
|
#### Member variables of AdaFacePostprocessor
|
|
The member variables of AdaFacePostprocessor are as follows
|
|
> > * **l2_normalize**(bool): Whether to perform l2 normalization before outputting the face vector. Default false.
|
|
|
|
|
|
## Other Documents
|
|
|
|
- [AdaFace Model Description](..)
|
|
- [AdaFace C++ Deployment](../cpp)
|
|
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|
|
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|