Files
FastDeploy/examples/vision/facedet/yolov7face/README.md
CoolCola 5f8d9d2626 [Doc] add yolov7face example readme file (#1075)
* fit yolov7face file path

* TODO:添加yolov7facePython接口Predict

* resolve yolov7face.py

* resolve yolov7face.py

* resolve yolov7face.py

* add yolov7face example readme file

* [Doc] fix yolov7face example readme file

* [Doc]fix yolov7face example readme file
2023-01-17 19:19:44 +08:00

46 lines
3.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# YOLOv7Face准备部署模型
- YOLOv7Face部署模型实现来自[YOLOv7Face](https://github.com/derronqi/yolov7-face),和[基于WiderFace的预训练模型](https://github.com/derronqi/yolov7-face)
- 1[官方库](https://github.com/derronqi/yolov7-face)中提供的*.pt通过[导出ONNX模型](#导出ONNX模型)操作后,可进行部署;
- 2开发者基于自己数据训练的YOLOv7Face模型可按照[导出ONNX模型](#%E5%AF%BC%E5%87%BAONNX%E6%A8%A1%E5%9E%8B)后,完成部署。
## 导出ONNX模型
访问[YOLOv7Face](https://github.com/derronqi/yolov7-face)官方github库按照指引下载安装下载`.pt` 模型,利用 `export.py` 得到`onnx`格式文件。
* 下载yolov7模型文件
| Method | Test Size | Easy | Medium | Hard | FLOPs (B) @640 | Link |
| -----------------| ---------- | ----- | ------ | ----- | -------------- | ----- |
| yolov7-lite-t | 640 | 88.7 | 85.2 | 71.5 | 0.8 | [google](https://drive.google.com/file/d/1HNXd9EdS-BJ4dk7t1xJDFfr1JIHjd5yb/view?usp=sharing) |
| yolov7-lite-s | 640 | 92.7 | 89.9 | 78.5 | 3.0 | [google](https://drive.google.com/file/d/1MIC5vD4zqRLF_uEZHzjW_f-G3TsfaOAf/view?usp=sharing) |
| yolov7-tiny | 640 | 94.7 | 92.6 | 82.1 | 13.2 | [google](https://drive.google.com/file/d/1Mona-I4PclJr5mjX1qb8dgDeMpYyBcwM/view?usp=sharing) |
| yolov7s | 640 | 94.8 | 93.1 | 85.2 | 16.8 | [google](https://drive.google.com/file/d/1_ZjnNF_JKHVlq41EgEqMoGE2TtQ3SYmZ/view?usp=sharing) |
| yolov7 | 640 | 96.9 | 95.5 | 88.0 | 103.4 | [google](https://drive.google.com/file/d/1oIaGXFd4goyBvB1mYDK24GLof53H9ZYo/view?usp=sharing) |
| yolov7+TTA | 640 | 97.2 | 95.8 | 87.7 | 103.4 | [google](https://drive.google.com/file/d/1oIaGXFd4goyBvB1mYDK24GLof53H9ZYo/view?usp=sharing) |
| yolov7-w6 | 960 | 96.4 | 95.0 | 88.3 | 89.0 | [google](https://drive.google.com/file/d/1U_kH7Xa_9-2RK2hnyvsyMLKdYB0h4MJS/view?usp=sharing) |
| yolov7-w6+TTA | 1280 | 96.9 | 95.8 | 90.4 | 89.0 | [google](https://drive.google.com/file/d/1U_kH7Xa_9-2RK2hnyvsyMLKdYB0h4MJS/view?usp=sharing) |
* 导出onnx格式文件
```bash
python ./models/export.py --weights yolov7-tiny-face.pt --grid --simplify --img-size 640 640
```
## 下载预训练ONNX模型
为了方便开发者的测试下面提供了YOLOv7Face导出的各系列模型开发者可直接下载使用。
| 模型 | 大小 |
|:---------------------------------------------------------------- |:----- |
| [yolov7-lite-e](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-lite-e.onnx) | 3.2MB |
| [yolov7-tiny-face](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7-tiny-face.onnx) | 30.3MB |
## 详细部署文档
- [Python部署](python)
- [C++部署](cpp)
## 版本说明
- 本版本文档和代码基于[YOLOv7Face](https://github.com/derronqi/yolov7-face) 编写