Files
FastDeploy/examples/vision/facedet/scrfd/rknpu2/python/README.md
HCQ14 61c2f87e0c [Doc] Update English version of some documents (#1084)
* Create README_CN.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update WebDemo.md

* Update and rename WebDemo_en.md to WebDemo_CN.md

* Update and rename DEVELOPMENT_cn.md to DEVELOPMENT_CN.md

* Update DEVELOPMENT_CN.md

* Update DEVELOPMENT.md

* Update RNN.md

* Update and rename RNN_EN.md to RNN_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update export.md

* Update and rename export_EN.md to export_CN.md

* Update README.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update kunlunxin.md

* Update classification_result.md

* Update classification_result_EN.md

* Rename classification_result_EN.md to classification_result_CN.md

* Update detection_result.md

* Update and rename detection_result_EN.md to detection_result_CN.md

* Update face_alignment_result.md

* Update and rename face_alignment_result_EN.md to face_alignment_result_CN.md

* Update face_detection_result.md

* Update and rename face_detection_result_EN.md to face_detection_result_CN.md

* Update face_recognition_result.md

* Update and rename face_recognition_result_EN.md to face_recognition_result_CN.md

* Update headpose_result.md

* Update and rename headpose_result_EN.md to headpose_result_CN.md

* Update keypointdetection_result.md

* Update and rename keypointdetection_result_EN.md to keypointdetection_result_CN.md

* Update matting_result.md

* Update and rename matting_result_EN.md to matting_result_CN.md

* Update mot_result.md

* Update and rename mot_result_EN.md to mot_result_CN.md

* Update ocr_result.md

* Update and rename ocr_result_EN.md to ocr_result_CN.md

* Update segmentation_result.md

* Update and rename segmentation_result_EN.md to segmentation_result_CN.md

* Update README.md

* Update README.md

* Update quantize.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2023-01-06 18:01:34 +08:00

46 lines
1.8 KiB
Markdown

English | [简体中文](README_CN.md)
# SCRFD Python Deployment Example
Two steps before deployment
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../../docs/cn/build_and_install/rknpu2.md)
This directory provides examples that `infer.py` fast finishes the deployment of SCRFD on RKNPU. The script is as follows
## Copy model files
Refer to [SCRFD model conversion](../README.md) to convert SCRFD ONNX model to RKNN model and move it to this directory.
## Run example
After copying model files, enter the following command to run it: RKNPU2 Python example
```bash
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/facedet/scrfd/rknpu2/python
# Download images
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
# Inference
python3 infer.py --model_file ./scrfd_500m_bnkps_shape640x640_rk3588.rknn \
--image test_lite_face_detector_3.jpg
```
## Visualization
The visualized result after running is as follows
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301789-1981d065-208f-4a6b-857c-9a0f9a63e0b1.jpg">
## Note
The model needs to be in NHWC format on RKNPU. The normalized image will be embedded in the RKNN model. Therefore, when we deploy with FastDeploy,
call DisablePermute(C++) or `disable_permute(Python) to disable normalization and data format conversion during preprocessing.
## Other Documents
- [SCRFD Model Description](../README.md)
- [SCRFD C++ Deployment](../cpp/README.md)
- [Model Prediction Results](../../../../../../docs/api/vision_results/README.md)
- [Convert SCRFD RKNN Model Files](../README.md)