mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* cpp example run success * add landmarks * fix reviewed problem * add pybind * add readme in examples * fix reviewed problem * new file: tests/models/test_centerface.py * fix reviewed problem 230202
76 lines
3.1 KiB
Markdown
76 lines
3.1 KiB
Markdown
English | [简体中文](README_CN.md)
|
|
# CenterFace Python Deployment Example
|
|
|
|
Before deployment, two steps require confirmation
|
|
|
|
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
|
|
This directory provides examples that `infer.py` fast finishes the deployment of CenterFace on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
|
|
|
|
```bash
|
|
# Download the example code for deployment
|
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
cd examples/vision/facedet/CenterFace/python/
|
|
|
|
# Download CenterFace model files and test images
|
|
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/CenterFace.onnx
|
|
|
|
# Use CenterFace.onnx model
|
|
# CPU inference
|
|
python infer.py --model CenterFace.onnx --image test_lite_face_detector_3.jpg --device cpu
|
|
# GPU inference
|
|
python infer.py --model CenterFace.onnx --image test_lite_face_detector_3.jpg --device gpu
|
|
# TensorRT inference on GPU
|
|
python infer.py --model CenterFace.onnx --image test_lite_face_detector_3.jpg --device gpu --use_trt True
|
|
```
|
|
|
|
The visualized result after running is as follows
|
|
|
|
<img width="640" src="https://user-images.githubusercontent.com/44280887/215670067-e14b5205-e303-4c3a-9812-be4a81173dc6.jpg">
|
|
|
|
## CenterFace Python Interface
|
|
|
|
```python
|
|
fastdeploy.vision.facedet.CenterFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
|
|
```
|
|
|
|
CenterFace model loading and initialization, among which model_file is the exported ONNX model format
|
|
|
|
**Parameter**
|
|
|
|
> * **model_file**(str): Model file path
|
|
> * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format
|
|
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
|
> * **model_format**(ModelFormat): Model format. ONNX format by default
|
|
|
|
### predict function
|
|
|
|
> ```python
|
|
> CenterFace.predict(image_data)
|
|
> ```
|
|
>
|
|
> Model prediction interface. Input images and output detection results.
|
|
>
|
|
> **Parameter**
|
|
>
|
|
> > * **image_data**(np.ndarray): Input data in HWC or BGR format
|
|
|
|
|
|
> **Return**
|
|
>
|
|
> > Return `fastdeploy.vision.FaceDetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description.
|
|
|
|
### Class Member Property
|
|
#### Pre-processing Parameter
|
|
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
|
|
|
|
> > * **size**(list[int]): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [640, 640]
|
|
|
|
## Other Documents
|
|
|
|
- [CenterFace Model Description](..)
|
|
- [CenterFace C++ Deployment](../cpp)
|
|
- [Model Prediction Results](../../../../../docs/api/vision_results/)
|