Files
FastDeploy/examples/vision/facedet/centerface/python/README.md
guxukai 1c115bb237 [Model] Add facedet model: CenterFace (#1131)
* cpp example run success

* add landmarks

* fix reviewed problem

* add pybind

* add readme in examples

* fix reviewed problem

* new file:   tests/models/test_centerface.py

* fix reviewed problem 230202
2023-02-07 14:05:08 +08:00

76 lines
3.1 KiB
Markdown

English | [简体中文](README_CN.md)
# CenterFace Python Deployment Example
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
This directory provides examples that `infer.py` fast finishes the deployment of CenterFace on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
```bash
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/facedet/CenterFace/python/
# Download CenterFace model files and test images
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/CenterFace.onnx
# Use CenterFace.onnx model
# CPU inference
python infer.py --model CenterFace.onnx --image test_lite_face_detector_3.jpg --device cpu
# GPU inference
python infer.py --model CenterFace.onnx --image test_lite_face_detector_3.jpg --device gpu
# TensorRT inference on GPU
python infer.py --model CenterFace.onnx --image test_lite_face_detector_3.jpg --device gpu --use_trt True
```
The visualized result after running is as follows
<img width="640" src="https://user-images.githubusercontent.com/44280887/215670067-e14b5205-e303-4c3a-9812-be4a81173dc6.jpg">
## CenterFace Python Interface
```python
fastdeploy.vision.facedet.CenterFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
CenterFace model loading and initialization, among which model_file is the exported ONNX model format
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path. No need to set when the model is in ONNX format
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. ONNX format by default
### predict function
> ```python
> CenterFace.predict(image_data)
> ```
>
> Model prediction interface. Input images and output detection results.
>
> **Parameter**
>
> > * **image_data**(np.ndarray): Input data in HWC or BGR format
> **Return**
>
> > Return `fastdeploy.vision.FaceDetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description.
### Class Member Property
#### Pre-processing Parameter
Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results
> > * **size**(list[int]): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [640, 640]
## Other Documents
- [CenterFace Model Description](..)
- [CenterFace C++ Deployment](../cpp)
- [Model Prediction Results](../../../../../docs/api/vision_results/)