Files
FastDeploy/examples/vision/facedet/centerface/cpp/README.md
guxukai 1c115bb237 [Model] Add facedet model: CenterFace (#1131)
* cpp example run success

* add landmarks

* fix reviewed problem

* add pybind

* add readme in examples

* fix reviewed problem

* new file:   tests/models/test_centerface.py

* fix reviewed problem 230202
2023-02-07 14:05:08 +08:00

3.4 KiB

English | 简体中文

CenterFace C++ Deployment Example

This directory provides examples that infer.cc fast finishes the deployment of CenterFace on CPU/GPU and GPU accelerated by TensorRT.

Before deployment, two steps require confirmation

Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory.

mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above 
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.4
tar xvf fastdeploy-linux-x64-x.x.x.tgz # x.x.x > 1.0.4
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x # x.x.x > 1.0.4
make -j

# Download the official converted CenterFace model files and test images 
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/CenterFace.onnx

# Use CenterFace.onnx model
# CPU inference
./infer_demo CenterFace.onnx test_lite_face_detector_3.jpg 0
# GPU inference
./infer_demo CenterFace.onnx test_lite_face_detector_3.jpg 1
# TensorRT inference on GPU
./infer_demo CenterFace.onnx test_lite_face_detector_3.jpg 2

The visualized result after running is as follows

The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:

CenterFace C++ Interface

CenterFace Class

fastdeploy::vision::facedet::CenterFace(
        const string& model_file,
        const string& params_file = "",
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::ONNX)

CenterFace model loading and initialization, among which model_file is the exported ONNX model format

Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path. Only passing an empty string when the model is in ONNX format
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. ONNX format by default

Predict Function

CenterFace::Predict(cv::Mat* im, FaceDetectionResult* result)

Model prediction interface. Input images and output detection results.

Parameter

  • im: Input images in HWC or BGR format
  • result: Detection results, including detection box and confidence of each box. Refer to Vision Model Prediction Result for FaceDetectionResult