Files
FastDeploy/examples/vision/facedet/blazeface/python/README.md
CoolCola 42d14e7119 [Model] Support BlazeFace Model (#1172)
* fit yolov7face file path

* TODO:添加yolov7facePython接口Predict

* resolve yolov7face.py

* resolve yolov7face.py

* resolve yolov7face.py

* add yolov7face example readme file

* [Doc] fix yolov7face example readme file

* [Doc]fix yolov7face example readme file

* support BlazeFace

* add blazeface readme file

* fix review problem

* fix code style error

* fix review problem

* fix review problem

* fix head file problem

* fix review problem

* fix review problem

* fix readme file problem

* add English readme file

* fix English readme file
2023-02-06 14:24:12 +08:00

69 lines
2.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

English | [简体中文](README_CN.md)
# BlazeFace Python Deployment Example
Before deployment, two steps require confirmation
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
This directory provides examples that `infer.py` fast finishes the deployment of BlazeFace on CPU/GPU.
```bash
# Download the example code for deployment
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/facedet/blazeface/python/
# Download BlazeFace model files and test images
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
wget https://bj.bcebos.com/paddlehub/fastdeploy/blazeface-1000e.tgz
# Use blazeface-1000e model
# CPU Inference
python infer.py --model blazeface-1000e/ --image test_lite_face_detector_3.jpg --device cpu
# GPU Inference
python infer.py --model blazeface-1000e/ --image test_lite_face_detector_3.jpg --device gpu
```
The visualized result after running is as follows
<img width="640" src="https://user-images.githubusercontent.com/67993288/184301839-a29aefae-16c9-4196-bf9d-9c6cf694f02d.jpg">
## BlazeFace Python Interface
```python
fastdeploy.vision.facedet.BlzaeFace(model_file, params_file=None, runtime_option=None, config_file=None, model_format=ModelFormat.PADDLE)
```
BlazeFace model loading and initialization, among which model_file is the exported PADDLE model format
**Parameter**
> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path. No need to set when the model is in PADDLE format
> * **config_file**(str): config file path. No need to set when the model is in PADDLE format
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
> * **model_format**(ModelFormat): Model format. PADDLE format by default
### predict function
> ```python
> BlazeFace.predict(input_image)
> ```
> Through let BlazeFace.postprocessor.conf_threshold = 0.2to modify conf_threshold
>
> Model prediction interface. Input images and output detection results.
>
> **Parameter**
>
> > * **input_image**(np.ndarray): Input image in HWC or BGR format
> **Return**
>
> > Return`fastdeploy.vision.FaceDetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for its description.
## Other Documents
- [BlazeFace Model Description](..)
- [BlazeFace C++ Deployment](../cpp)
- [Model Prediction Results](../../../../../docs/api/vision_results/)