mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* fit yolov7face file path * TODO:添加yolov7facePython接口Predict * resolve yolov7face.py * resolve yolov7face.py * resolve yolov7face.py * add yolov7face example readme file * [Doc] fix yolov7face example readme file * [Doc]fix yolov7face example readme file * support BlazeFace * add blazeface readme file * fix review problem * fix code style error * fix review problem * fix review problem * fix head file problem * fix review problem * fix review problem * fix readme file problem * add English readme file * fix English readme file
78 lines
3.1 KiB
Markdown
78 lines
3.1 KiB
Markdown
[English](README.md) | 简体中文
|
||
# BlazeFace C++部署示例
|
||
|
||
本目录下提供`infer.cc`快速完成BlazeFace在CPU/GPU部署的示例。
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
|
||
|
||
```bash
|
||
mkdir build
|
||
cd build
|
||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz # x.x.x >= 1.0.4
|
||
tar xvf fastdeploy-linux-x64-x.x.x.tgz # x.x.x >= 1.0.4
|
||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x # x.x.x >= 1.0.4
|
||
make -j
|
||
|
||
#下载官方转换好的BlazeFace模型文件和测试图片
|
||
wget https://raw.githubusercontent.com/DefTruth/lite.ai.toolkit/main/examples/lite/resources/test_lite_face_detector_3.jpg
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/blzeface-1000e.tgz
|
||
|
||
#使用blazeface-1000e模型
|
||
# CPU推理
|
||
./infer_demo blazeface-1000e/ test_lite_face_detector_3.jpg 0
|
||
# GPU推理
|
||
./infer_demo blazeface-1000e/ test_lite_face_detector_3.jpg 1
|
||
|
||
运行完成可视化结果如下图所示
|
||
|
||
<img width="640" src="https://user-images.githubusercontent.com/49013063/206170111-843febb6-67d6-4c46-a121-d87d003bba21.jpg">
|
||
|
||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||
|
||
## BlazeFace C++接口
|
||
|
||
### BlazeFace类
|
||
|
||
```c++
|
||
fastdeploy::vision::facedet::BlazeFace(
|
||
const string& model_file,
|
||
const string& params_file = "",
|
||
const string& config_file = "",
|
||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||
const ModelFormat& model_format = ModelFormat::PADDLE)
|
||
```
|
||
|
||
BlazeFace模型加载和初始化,其中model_file为导出的PADDLE模型格式。
|
||
|
||
**参数**
|
||
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
|
||
> * **config_file**(str): 配置文件路径,当模型格式为ONNX时,此参数传入空字符串即可
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为PADDLE格式
|
||
|
||
#### Predict函数
|
||
|
||
> ```c++
|
||
> BlazeFace::Predict(cv::Mat& im, FaceDetectionResult* result)
|
||
> ```
|
||
>
|
||
> 模型预测接口,输入图像直接输出检测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||
> > * **result**: 检测结果,包括检测框,各个框的置信度, FaceDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
|
||
- [模型介绍](../../)
|
||
- [Python部署](../python)
|
||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|