mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
2.7 KiB
2.7 KiB
English | 简体中文
PIPNet Python部署示例
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- FastDeploy Python whl包安装,参考FastDeploy Python安装
本目录下提供infer.py
快速完成PIPNet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例,保证 FastDeploy 版本 >= 0.7.0 支持PIPNet模型。执行如下脚本即可完成
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/facealign/pipnet/python
# 下载PIPNet模型文件和测试图片以及视频
## 原版ONNX模型
wget https://bj.bcebos.com/paddlehub/fastdeploy/pipnet_resnet18_10x19x32x256_aflw.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/facealign_input.png
# CPU推理
python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device cpu
# GPU推理
python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu
# TRT推理
python infer.py --model pipnet_resnet18_10x19x32x256_aflw.onnx --image facealign_input.png --device gpu --backend trt
运行完成可视化结果如下图所示
PIPNet Python接口
fd.vision.facealign.PIPNet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
PIPNet模型加载和初始化,其中model_file为导出的ONNX模型格式
参数
- model_file(str): 模型文件路径
- params_file(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
- runtime_option(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
- model_format(ModelFormat): 模型格式,默认为ONNX
predict函数
PIPNet.predict(input_image)
模型预测结口,输入图像直接输出landmarks坐标结果。
参数
- input_image(np.ndarray): 输入数据,注意需为HWC,BGR格式
返回
返回
fastdeploy.vision.FaceAlignmentResult
结构体,结构体说明参考文档视觉模型预测结果