mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
29 lines
2.0 KiB
Markdown
29 lines
2.0 KiB
Markdown
[English](README.md) | 简体中文
|
||
# YOLOv8准备部署模型
|
||
|
||
- YOLOv8部署模型实现来自[YOLOv8](https://github.com/ultralytics/ultralytics),和[基于COCO的预训练模型](https://github.com/ultralytics/ultralytics)
|
||
- (1)[官方库](https://github.com/ultralytics/ultralytics)提供的*.onnx可直接进行部署;
|
||
- (2)开发者基于自己数据训练的YOLOv8模型,可使用[YOLOv8](https://github.com/ultralytics/ultralytics)中的`export.py`导出ONNX文件后,完成部署。
|
||
|
||
|
||
## 下载预训练ONNX模型
|
||
|
||
为了方便开发者的测试,下面提供了YOLOv8导出的各系列模型,开发者可直接下载使用。(下表中模型的精度来源于源官方库)
|
||
| 模型 | 大小 | 精度 | 备注 |
|
||
|:---------------------------------------------------------------- |:----- |:----- |:---- |
|
||
| [YOLOv8n](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8n.onnx) | 12.1MB | 37.3% | This model file is sourced from [YOLOv8](https://github.com/ultralytics/ultralytics),GPL-3.0 License |
|
||
| [YOLOv8s](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8s.onnx) | 42.6MB | 44.9% | This model file is sourced from [YOLOv8](https://github.com/ultralytics/ultralytics),GPL-3.0 License |
|
||
| [YOLOv8m](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8m.onnx) | 98.8MB | 50.2% | This model file is sourced from [YOLOv8](https://github.com/ultralytics/ultralytics),GPL-3.0 License |
|
||
| [YOLOv8l](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8l.onnx) | 166.7MB | 52.9% | This model file is sourced from [YOLOv8](https://github.com/ultralytics/ultralytics),GPL-3.0 License |
|
||
| [YOLOv8x](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8x.onnx) | 260.3MB | 53.9% | This model file is sourced from [YOLOv8](https://github.com/ultralytics/ultralytics),GPL-3.0 License |
|
||
|
||
|
||
## 详细部署文档
|
||
|
||
- [Python部署](python)
|
||
- [C++部署](cpp)
|
||
|
||
## 版本说明
|
||
|
||
- 本版本文档和代码基于[YOLOv8](https://github.com/ultralytics/ultralytics) 编写
|