mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
163 lines
4.9 KiB
Markdown
Executable File
163 lines
4.9 KiB
Markdown
Executable File
English | [简体中文](README_CN.md)
|
||
# YOLOv5 C Deployment Example
|
||
|
||
This directory provides `infer.c` to finish the deployment of YOLOv5 on CPU/GPU.
|
||
|
||
Before deployment, two steps require confirmation
|
||
|
||
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.4 or above (x.x.x>=1.0.4) is required to support this model.
|
||
|
||
```bash
|
||
# 1. # Download the YOLOv5 model file and test images
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5s.onnx
|
||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||
|
||
# CPU inference
|
||
./infer_demo yolov5s.onnx 000000014439.jpg 0
|
||
# GPU inference
|
||
./infer_demo yolov5s.onnx 000000014439.jpg 1
|
||
```
|
||
|
||
The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:
|
||
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/en/faq/use_sdk_on_windows.md)
|
||
|
||
## YOLOv5 C Interface
|
||
|
||
### RuntimeOption
|
||
|
||
```c
|
||
FD_C_RuntimeOptionWrapper* FD_C_CreateRuntimeOptionWrapper()
|
||
```
|
||
|
||
> Create a RuntimeOption object, and return a pointer to manipulate it.
|
||
>
|
||
> **Return**
|
||
>
|
||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
|
||
|
||
```c
|
||
void FD_C_RuntimeOptionWrapperUseCpu(
|
||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper)
|
||
```
|
||
|
||
> Enable Cpu inference.
|
||
>
|
||
> **Params**
|
||
>
|
||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
|
||
|
||
```c
|
||
void FD_C_RuntimeOptionWrapperUseGpu(
|
||
FD_C_RuntimeOptionWrapper* fd_c_runtime_option_wrapper,
|
||
int gpu_id)
|
||
```
|
||
> Enable Gpu inference.
|
||
>
|
||
> **Params**
|
||
>
|
||
> * **fd_c_runtime_option_wrapper**(FD_C_RuntimeOptionWrapper*): Pointer to manipulate RuntimeOption object.
|
||
|
||
> * **gpu_id**(int): gpu id
|
||
|
||
|
||
### Model
|
||
|
||
```c
|
||
|
||
FD_C_YOLOv5Wrapper* FD_C_CreateYOLOv5Wrapper(
|
||
const char* model_file, const char* params_file, const char* config_file,
|
||
FD_C_RuntimeOptionWrapper* runtime_option,
|
||
const FD_C_ModelFormat model_format)
|
||
|
||
```
|
||
|
||
> Create a YOLOv5 model object, and return a pointer to manipulate it.
|
||
>
|
||
> **Params**
|
||
>
|
||
> * **model_file**(str): Model file path
|
||
> * **params_file**(str): Parameter file path,when model format is onnx,this can be empty string
|
||
> * **runtime_option**(FD_C_RuntimeOptionWrapper*): Backend inference configuration. None by default, which is the default configuration
|
||
> * **model_format**(FD_C_ModelFormat): Model format.
|
||
>
|
||
> **Return**
|
||
> * **fd_c_yolov5_wrapper**(FD_C_YOLOv5Wrapper*): Pointer to manipulate YOLOv5 object.
|
||
|
||
|
||
#### Read and write image
|
||
|
||
```c
|
||
FD_C_Mat FD_C_Imread(const char* imgpath)
|
||
```
|
||
|
||
> Read an image, and return a pointer to cv::Mat.
|
||
>
|
||
> **Params**
|
||
>
|
||
> * **imgpath**(const char*): image path
|
||
>
|
||
> **Return**
|
||
>
|
||
> * **imgmat**(FD_C_Mat): pointer to cv::Mat object which holds the image.
|
||
|
||
|
||
```c
|
||
FD_C_Bool FD_C_Imwrite(const char* savepath, FD_C_Mat img);
|
||
```
|
||
|
||
> Write image to a file.
|
||
>
|
||
> **Params**
|
||
>
|
||
> * **savepath**(const char*): save path
|
||
> * **img**(FD_C_Mat): pointer to cv::Mat object
|
||
>
|
||
> **Return**
|
||
>
|
||
> * **result**(FD_C_Bool): bool to indicate success or failure
|
||
|
||
|
||
#### Prediction
|
||
|
||
```c
|
||
FD_C_Bool FD_C_YOLOv5WrapperPredict(
|
||
__fd_take FD_C_YOLOv5Wrapper* fd_c_yolov5_wrapper, FD_C_Mat img,
|
||
FD_C_DetectionResult* fd_c_detection_result)
|
||
```
|
||
>
|
||
> Predict an image, and generate detection result.
|
||
>
|
||
> **Params**
|
||
> * **fd_c_yolov5_wrapper**(FD_C_YOLOv5Wrapper*): Pointer to manipulate YOLOv5 object.
|
||
> * **img**(FD_C_Mat): pointer to cv::Mat object, which can be obained by FD_C_Imread interface
|
||
> * **fd_c_detection_result**FD_C_DetectionResult*): Detection result, including detection box and confidence of each box. Refer to [Vision Model Prediction Result](../../../../../docs/api/vision_results/) for DetectionResults
|
||
|
||
|
||
#### Result
|
||
|
||
```c
|
||
FD_C_Mat FD_C_VisDetection(FD_C_Mat im, FD_C_DetectionResult* fd_detection_result,
|
||
float score_threshold, int line_size, float font_size);
|
||
```
|
||
>
|
||
> Visualize detection results and return visualization image.
|
||
>
|
||
> **Params**
|
||
> * **im**(FD_C_Mat): pointer to input image
|
||
> * **fd_detection_result**(FD_C_DetectionResult*): pointer to C DetectionResult structure
|
||
> * **score_threshold**(float): score threshold
|
||
> * **line_size**(int): line size
|
||
> * **font_size**(float): font size
|
||
>
|
||
> **Return**
|
||
> * **vis_im**(FD_C_Mat): pointer to visualization image.
|
||
|
||
|
||
- [Model Description](../../)
|
||
- [Python Deployment](../python)
|
||
- [Vision Model prediction results](../../../../../docs/api/vision_results/)
|
||
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|