Files
FastDeploy/examples/audio/pp-tts/serving/README_CN.md
HCQ14 61c2f87e0c [Doc] Update English version of some documents (#1084)
* Create README_CN.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update README_CN.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update WebDemo.md

* Update and rename WebDemo_en.md to WebDemo_CN.md

* Update and rename DEVELOPMENT_cn.md to DEVELOPMENT_CN.md

* Update DEVELOPMENT_CN.md

* Update DEVELOPMENT.md

* Update RNN.md

* Update and rename RNN_EN.md to RNN_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update and rename README_en.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update README.md

* Update README_cn.md

* Rename README_cn.md to README_CN.md

* Update export.md

* Update and rename export_EN.md to export_CN.md

* Update README.md

* Update README.md

* Create README_CN.md

* Update README.md

* Update README.md

* Update kunlunxin.md

* Update classification_result.md

* Update classification_result_EN.md

* Rename classification_result_EN.md to classification_result_CN.md

* Update detection_result.md

* Update and rename detection_result_EN.md to detection_result_CN.md

* Update face_alignment_result.md

* Update and rename face_alignment_result_EN.md to face_alignment_result_CN.md

* Update face_detection_result.md

* Update and rename face_detection_result_EN.md to face_detection_result_CN.md

* Update face_recognition_result.md

* Update and rename face_recognition_result_EN.md to face_recognition_result_CN.md

* Update headpose_result.md

* Update and rename headpose_result_EN.md to headpose_result_CN.md

* Update keypointdetection_result.md

* Update and rename keypointdetection_result_EN.md to keypointdetection_result_CN.md

* Update matting_result.md

* Update and rename matting_result_EN.md to matting_result_CN.md

* Update mot_result.md

* Update and rename mot_result_EN.md to mot_result_CN.md

* Update ocr_result.md

* Update and rename ocr_result_EN.md to ocr_result_CN.md

* Update segmentation_result.md

* Update and rename segmentation_result_EN.md to segmentation_result_CN.md

* Update README.md

* Update README.md

* Update quantize.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
2023-01-06 18:01:34 +08:00

3.5 KiB

简体中文 | English

PP-TTS流式语音合成服务化部署

介绍

本文介绍了使用FastDeploy搭建流式语音合成服务的方法.

服务端必须在docker内启动,而客户端不是必须在docker容器内.

本文所在路径($PWD)下的streaming_pp_tts里包含模型的配置和代码(服务端会加载模型和代码以启动服务), 需要将其映射到docker中使用.

使用

1. 服务端

1.1 Docker

docker pull registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09
docker run -dit  --net=host --name fastdeploy --shm-size="1g" -v $PWD:/models registry.baidubce.com/paddlepaddle/fastdeploy_serving_cpu_only:22.09
docker exec -it -u root fastdeploy bash

1.2 安装(在docker内)

apt-get install build-essential python3-dev libssl-dev libffi-dev libxml2 libxml2-dev libxslt1-dev zlib1g-dev libsndfile1 language-pack-zh-hans wget zip
python3 -m pip install --upgrade pip
pip3 install -U fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
pip3 install -U paddlespeech paddlepaddle
export LC_ALL="zh_CN.UTF-8"
export LANG="zh_CN.UTF-8"
export LANGUAGE="zh_CN:zh:en_US:en"

1.3 下载模型(在docker内,可跳过)

模型文件会自动下载并解压缩, 如果您想要手动下载, 请使用下面的命令.

cd /models/streaming_pp_tts/1
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip
wget https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_onnx_0.2.0.zip
unzip fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0.zip
unzip mb_melgan_csmsc_onnx_0.2.0.zip

为了方便用户使用, 我们推荐用户使用1.1中的docker -v命令将$PWD(streaming_pp_tts及里面包含的模型的配置和代码)映射到了docker内的/models路径, 用户也可以使用其他办法, 但无论使用哪种方法, 最终在docker内的模型目录及结构如下图所示.

/models 
│
└───streaming_pp_tts                                              #整个服务模型文件夹
    │   config.pbtxt                                              #服务模型配置文件
    │   stream_client.py                                          #客户端代码
    │
    └───1                                                         #模型版本号,此处为1
        │   model.py                                              #模型启动代码
        └───fastspeech2_cnndecoder_csmsc_streaming_onnx_1.0.0     #启动代码所需的模型文件
        └───mb_melgan_csmsc_onnx_0.2.0                            #启动代码所需的模型文件

1.4 启动服务端(在docker内)

fastdeployserver --model-repository=/models --model-control-mode=explicit --load-model=streaming_pp_tts

参数:

  • model-repository(required): 整套模型streaming_pp_tts存放的路径.
  • model-control-mode(required): 模型加载的方式,现阶段, 使用'explicit'即可.
  • load-model(required): 需要加载的模型的名称.
  • http-port(optional): HTTP服务的端口号. 默认: 8000. 本示例中未使用该端口.
  • grpc-port(optional): GRPC服务的端口号. 默认: 8001.
  • metrics-port(optional): 服务端指标的端口号. 默认: 8002. 本示例中未使用该端口.

2. 客户端

2.1 安装

pip3 install tritonclient[all]

2.2 发送请求

python3 /models/streaming_pp_tts/stream_client.py