Files
FastDeploy/docs/en/quick_start/models/python.md
Jason 3ff562aa77 Bump up to version 0.3.0 (#371)
* Update VERSION_NUMBER

* Update paddle_inference.cmake

* Delete docs directory

* release new docs

* update version number

* add vision result doc

* update version

* fix dead link

* fix vision

* fix dead link

* Update README_EN.md

* Update README_EN.md

* Update README_EN.md

* Update README_EN.md

* Update README_EN.md

* Update README_CN.md

* Update README_EN.md

* Update README_CN.md

* Update README_EN.md

* Update README_CN.md

* Update README_EN.md

* Update README_EN.md

Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com>
2022-10-15 22:01:27 +08:00

55 lines
1.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Python Deployment
Make sure that FastDeploy is installed in the development environment. Refer to [FastDeploy Installation](../../build_and_install/) to install the pre-built FastDeploy, or build and install according to your own needs.
This document uses the PaddleDetection target detection model PPYOLOE as an example to show an inference example on the CPU.
## 1. Get the Model and Test Image
``` python
import fastdeploy as fd
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz"
image_url - "https://bj.bcebos.com/fastdeploy/tests/test_det.jpg"
fd.download_and_decompress(model_url, path=".")
fd.download(image_url, path=".")
```
## 2. Load Model
- More examples of models can be found in[FastDeploy/examples](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples)
``` python
model_file = "ppyoloe_crn_l_300e_coco/model.pdmodel"
params_file = "ppyoloe_crn_l_300e_coco/model.pdiparams"
infer_cfg_file = "ppyoloe_crn_l_300e_coco/infer_cfg.yml"
model = fd.vision.detection.PPYOLOE(model_file, params_file, infer_cfg_file)
```
## 3. Get Prediction for Image Object Detection
``` python
import cv2
im = cv2.imread("000000014439.jpg")
result = model.predict(im)
print(result)
```
## 4. Visualize image prediction results
``` python
vis_im = fd.vision.visualize.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
```
After the visualization is executed, open `vis_image.jpg` and the visualization effect is as follows
<div align="center">
<img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px />
</div>
## other documents
- [Switch model inference hardware and backend](../../faq/how_to_change_backend.md)