mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 04:46:16 +08:00

* add stable ci * fix * update * fix * rename tests dir;fix stable ci bug * add timeout limit * update
125 lines
4.4 KiB
Python
125 lines
4.4 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import os
|
|
import unittest
|
|
import weakref
|
|
|
|
from fastdeploy.engine.request import RequestOutput
|
|
from fastdeploy.engine.sampling_params import SamplingParams
|
|
from fastdeploy.entrypoints.llm import LLM
|
|
|
|
MODEL_NAME = os.getenv("MODEL_PATH") + "/ERNIE-4.5-0.3B-Paddle"
|
|
|
|
|
|
class TestGeneration(unittest.TestCase):
|
|
"""Test case for generation functionality"""
|
|
|
|
TOKEN_IDS = [
|
|
[0],
|
|
[0, 1],
|
|
[0, 1, 3],
|
|
[0, 2, 4, 6],
|
|
]
|
|
|
|
PROMPTS = [
|
|
"Hello, my name is",
|
|
"The capital of China is",
|
|
"The future of AI is",
|
|
"人工智能是",
|
|
]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
try:
|
|
llm = LLM(
|
|
model=MODEL_NAME,
|
|
max_num_batched_tokens=4096,
|
|
tensor_parallel_size=1,
|
|
engine_worker_queue_port=int(os.getenv("FD_ENGINE_QUEUE_PORT")),
|
|
)
|
|
cls.llm = weakref.proxy(llm)
|
|
except Exception as e:
|
|
print(f"Setting up LLM failed: {e}")
|
|
raise unittest.SkipTest(f"LLM initialization failed: {e}")
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
"""Clean up after all tests have run"""
|
|
if hasattr(cls, "llm"):
|
|
del cls.llm
|
|
|
|
def assert_outputs_equal(self, o1: list[RequestOutput], o2: list[RequestOutput]):
|
|
self.assertEqual([o.outputs for o in o1], [o.outputs for o in o2])
|
|
|
|
def test_consistency_single_prompt_tokens(self):
|
|
"""Test consistency between different prompt input formats"""
|
|
sampling_params = SamplingParams(temperature=1.0, top_p=0.0)
|
|
|
|
for prompt_token_ids in self.TOKEN_IDS:
|
|
with self.subTest(prompt_token_ids=prompt_token_ids):
|
|
output1 = self.llm.generate(prompts=prompt_token_ids, sampling_params=sampling_params)
|
|
output2 = self.llm.generate(
|
|
{"prompt": "", "prompt_token_ids": prompt_token_ids}, sampling_params=sampling_params
|
|
)
|
|
self.assert_outputs_equal(output1, output2)
|
|
|
|
def test_api_consistency_multi_prompt_tokens(self):
|
|
"""Test consistency with multiple prompt tokens"""
|
|
sampling_params = SamplingParams(
|
|
temperature=1.0,
|
|
top_p=0.0,
|
|
)
|
|
|
|
output1 = self.llm.generate(prompts=self.TOKEN_IDS, sampling_params=sampling_params)
|
|
|
|
output2 = self.llm.generate(
|
|
[{"prompt": "", "prompt_token_ids": p} for p in self.TOKEN_IDS],
|
|
sampling_params=sampling_params,
|
|
)
|
|
|
|
self.assert_outputs_equal(output1, output2)
|
|
|
|
def test_multiple_sampling_params(self):
|
|
"""Test multiple sampling parameters combinations"""
|
|
sampling_params = [
|
|
SamplingParams(temperature=0.01, top_p=0.95),
|
|
SamplingParams(temperature=0.3, top_p=0.95),
|
|
SamplingParams(temperature=0.7, top_p=0.95),
|
|
SamplingParams(temperature=0.99, top_p=0.95),
|
|
]
|
|
|
|
# Multiple SamplingParams should be matched with each prompt
|
|
outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=sampling_params)
|
|
self.assertEqual(len(self.PROMPTS), len(outputs))
|
|
|
|
# Exception raised if size mismatch
|
|
with self.assertRaises(ValueError):
|
|
self.llm.generate(prompts=self.PROMPTS, sampling_params=sampling_params[:3])
|
|
|
|
# Single SamplingParams should be applied to every prompt
|
|
single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95)
|
|
outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=single_sampling_params)
|
|
self.assertEqual(len(self.PROMPTS), len(outputs))
|
|
|
|
# sampling_params is None, default params should be applied
|
|
outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=None)
|
|
self.assertEqual(len(self.PROMPTS), len(outputs))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|