""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import os import unittest import weakref from fastdeploy.engine.request import RequestOutput from fastdeploy.engine.sampling_params import SamplingParams from fastdeploy.entrypoints.llm import LLM MODEL_NAME = os.getenv("MODEL_PATH") + "/ERNIE-4.5-0.3B-Paddle" class TestGeneration(unittest.TestCase): """Test case for generation functionality""" TOKEN_IDS = [ [0], [0, 1], [0, 1, 3], [0, 2, 4, 6], ] PROMPTS = [ "Hello, my name is", "The capital of China is", "The future of AI is", "人工智能是", ] @classmethod def setUpClass(cls): try: llm = LLM( model=MODEL_NAME, max_num_batched_tokens=4096, tensor_parallel_size=1, engine_worker_queue_port=int(os.getenv("FD_ENGINE_QUEUE_PORT")), ) cls.llm = weakref.proxy(llm) except Exception as e: print(f"Setting up LLM failed: {e}") raise unittest.SkipTest(f"LLM initialization failed: {e}") @classmethod def tearDownClass(cls): """Clean up after all tests have run""" if hasattr(cls, "llm"): del cls.llm def assert_outputs_equal(self, o1: list[RequestOutput], o2: list[RequestOutput]): self.assertEqual([o.outputs for o in o1], [o.outputs for o in o2]) def test_consistency_single_prompt_tokens(self): """Test consistency between different prompt input formats""" sampling_params = SamplingParams(temperature=1.0, top_p=0.0) for prompt_token_ids in self.TOKEN_IDS: with self.subTest(prompt_token_ids=prompt_token_ids): output1 = self.llm.generate(prompts=prompt_token_ids, sampling_params=sampling_params) output2 = self.llm.generate( {"prompt": "", "prompt_token_ids": prompt_token_ids}, sampling_params=sampling_params ) self.assert_outputs_equal(output1, output2) def test_api_consistency_multi_prompt_tokens(self): """Test consistency with multiple prompt tokens""" sampling_params = SamplingParams( temperature=1.0, top_p=0.0, ) output1 = self.llm.generate(prompts=self.TOKEN_IDS, sampling_params=sampling_params) output2 = self.llm.generate( [{"prompt": "", "prompt_token_ids": p} for p in self.TOKEN_IDS], sampling_params=sampling_params, ) self.assert_outputs_equal(output1, output2) def test_multiple_sampling_params(self): """Test multiple sampling parameters combinations""" sampling_params = [ SamplingParams(temperature=0.01, top_p=0.95), SamplingParams(temperature=0.3, top_p=0.95), SamplingParams(temperature=0.7, top_p=0.95), SamplingParams(temperature=0.99, top_p=0.95), ] # Multiple SamplingParams should be matched with each prompt outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=sampling_params) self.assertEqual(len(self.PROMPTS), len(outputs)) # Exception raised if size mismatch with self.assertRaises(ValueError): self.llm.generate(prompts=self.PROMPTS, sampling_params=sampling_params[:3]) # Single SamplingParams should be applied to every prompt single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95) outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=single_sampling_params) self.assertEqual(len(self.PROMPTS), len(outputs)) # sampling_params is None, default params should be applied outputs = self.llm.generate(prompts=self.PROMPTS, sampling_params=None) self.assertEqual(len(self.PROMPTS), len(outputs)) if __name__ == "__main__": unittest.main()