Files
FastDeploy/benchmark/cpp/benchmark_ppcls.cc
WJJ1995 2f8d9c9a57 [Benchmark]Add SegmentationDiff to compare SegmentationResult diff (#1404)
* avoid mem copy for cpp benchmark

* set CMAKE_BUILD_TYPE to Release

* Add SegmentationDiff

* change pointer to reference

* fixed bug

* cast uint8 to int32
2023-02-22 14:42:21 +08:00

62 lines
2.4 KiB
C++
Executable File

// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "flags.h"
#include "macros.h"
#include "option.h"
namespace vision = fastdeploy::vision;
namespace benchmark = fastdeploy::benchmark;
int main(int argc, char* argv[]) {
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION)
// Initialization
auto option = fastdeploy::RuntimeOption();
if (!CreateRuntimeOption(&option, argc, argv, true)) {
return -1;
}
auto im = cv::imread(FLAGS_image);
// Set max_batch_size 1 for best performance
if (FLAGS_backend == "paddle_trt") {
option.trt_option.max_batch_size = 1;
}
auto model_file = FLAGS_model + sep + "inference.pdmodel";
auto params_file = FLAGS_model + sep + "inference.pdiparams";
auto config_file = FLAGS_model + sep + "inference_cls.yaml";
auto model_ppcls = vision::classification::PaddleClasModel(
model_file, params_file, config_file, option);
vision::ClassifyResult res;
// Run once at least
model_ppcls.Predict(im, &res);
// 1. Test result diff
std::cout << "=============== Test result diff =================\n";
// Save result to -> disk.
std::string cls_result_path = "ppcls_result.txt";
benchmark::ResultManager::SaveClassifyResult(res, cls_result_path);
// Load result from <- disk.
vision::ClassifyResult res_loaded;
benchmark::ResultManager::LoadClassifyResult(&res_loaded, cls_result_path);
// Calculate diff between two results.
auto cls_diff =
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded);
std::cout << "Labels diff: mean=" << cls_diff.labels.mean
<< ", max=" << cls_diff.labels.max
<< ", min=" << cls_diff.labels.min << std::endl;
std::cout << "Scores diff: mean=" << cls_diff.scores.mean
<< ", max=" << cls_diff.scores.max
<< ", min=" << cls_diff.scores.min << std::endl;
BENCHMARK_MODEL(model_ppcls, model_ppcls.Predict(im, &res))
#endif
return 0;
}