// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "flags.h" #include "macros.h" #include "option.h" namespace vision = fastdeploy::vision; namespace benchmark = fastdeploy::benchmark; int main(int argc, char* argv[]) { #if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION) // Initialization auto option = fastdeploy::RuntimeOption(); if (!CreateRuntimeOption(&option, argc, argv, true)) { return -1; } auto im = cv::imread(FLAGS_image); // Set max_batch_size 1 for best performance if (FLAGS_backend == "paddle_trt") { option.trt_option.max_batch_size = 1; } auto model_file = FLAGS_model + sep + "inference.pdmodel"; auto params_file = FLAGS_model + sep + "inference.pdiparams"; auto config_file = FLAGS_model + sep + "inference_cls.yaml"; auto model_ppcls = vision::classification::PaddleClasModel( model_file, params_file, config_file, option); vision::ClassifyResult res; // Run once at least model_ppcls.Predict(im, &res); // 1. Test result diff std::cout << "=============== Test result diff =================\n"; // Save result to -> disk. std::string cls_result_path = "ppcls_result.txt"; benchmark::ResultManager::SaveClassifyResult(res, cls_result_path); // Load result from <- disk. vision::ClassifyResult res_loaded; benchmark::ResultManager::LoadClassifyResult(&res_loaded, cls_result_path); // Calculate diff between two results. auto cls_diff = benchmark::ResultManager::CalculateDiffStatis(res, res_loaded); std::cout << "Labels diff: mean=" << cls_diff.labels.mean << ", max=" << cls_diff.labels.max << ", min=" << cls_diff.labels.min << std::endl; std::cout << "Scores diff: mean=" << cls_diff.scores.mean << ", max=" << cls_diff.scores.max << ", min=" << cls_diff.scores.min << std::endl; BENCHMARK_MODEL(model_ppcls, model_ppcls.Predict(im, &res)) #endif return 0; }