mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 cbf88a46fa
			
		
	
	cbf88a46fa
	
	
	
		
			
			* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
		
			
				
	
	
		
			100 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Markdown
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Markdown
		
	
	
		
			Executable File
		
	
	
	
	
| English | [简体中文](README_CN.md)
 | |
| 
 | |
| 
 | |
| # YOLOv7 Python Deployment Demo
 | |
| 
 | |
| Two steps before deployment:
 | |
| 
 | |
| - 1. The hardware and software environment meets the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
 | |
| - 2. Install FastDeploy Python whl package. Please refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
 | |
| 
 | |
| 
 | |
| This doc provides a quick `infer.py` demo of YOLOv7 deployment on CPU/GPU, and accelerated GPU deployment by TensorRT. Run the following command:
 | |
| 
 | |
| ```bash
 | |
| # Download sample deployment code
 | |
| git clone https://github.com/PaddlePaddle/FastDeploy.git
 | |
| cd examples/vision/detection/yolov7/python/
 | |
| wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_infer.tar
 | |
| tar -xf yolov7_infer.tar
 | |
| wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
 | |
| 
 | |
| # CPU
 | |
| python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device cpu
 | |
| # GPU
 | |
| python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device gpu
 | |
| # KunlunXin XPU
 | |
| python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device kunlunxin
 | |
| # Huawei Ascend
 | |
| python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device ascend
 | |
| ```
 | |
| If you want to test ONNX model:
 | |
| ```bash
 | |
| # Download yolov7 model files and test images
 | |
| wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7.onnx
 | |
| wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
 | |
| 
 | |
| # CPU Inference
 | |
| python infer.py --model yolov7.onnx --image 000000014439.jpg --device cpu
 | |
| # GPU
 | |
| python infer.py --model yolov7.onnx --image 000000014439.jpg --device gpu
 | |
| # Infer with TensorRT on GPU
 | |
| python infer.py --model yolov7.onnx --image 000000014439.jpg --device gpu --use_trt True
 | |
| ```
 | |
| 
 | |
| The visualisation of the results is as follows.
 | |
| 
 | |
| <img width="640" src="https://user-images.githubusercontent.com/67993288/183847558-abcd9a57-9cd9-4891-b09a-710963c99b74.jpg">
 | |
| 
 | |
| ## YOLOv7 Python Interface
 | |
| 
 | |
| ```python
 | |
| fastdeploy.vision.detection.YOLOv7(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
 | |
| ```
 | |
| 
 | |
| YOLOv7 model loading and initialisation, with model_file being the exported ONNX model format.
 | |
| 
 | |
| **Parameters**
 | |
| 
 | |
| > * **model_file**(str): Model file path
 | |
| > * **params_file**(str): Parameter file path. If the model format is ONNX, the parameter can be filled with an empty string.
 | |
| > * **runtime_option**(RuntimeOption): Back-end inference configuration. The default is None, i.e. the default is applied
 | |
| > * **model_format**(ModelFormat): Model format. The default is ONNX format
 | |
| 
 | |
| ### Predict Function
 | |
| 
 | |
| > ```python
 | |
| > YOLOv7.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
 | |
| > ```
 | |
| >
 | |
| > Model prediction interface with direct output of detection results from the image input.
 | |
| >
 | |
| > **Parameters**
 | |
| >
 | |
| > > * **image_data**(np.ndarray): Input image. Images need to be in HWC or BGR format
 | |
| > > * **conf_threshold**(float): Filter threshold for detection box confidence
 | |
| > > * **nms_iou_threshold**(float): iou thresholds during NMS processing
 | |
| 
 | |
| > **Return**
 | |
| >
 | |
| > > Return to`fastdeploy.vision.DetectionResult`Struct. For more details, please refer to [Vision Model Results](../../../../../docs/api/vision_results/)
 | |
| 
 | |
| ### Class Member Variables
 | |
| 
 | |
| #### Pre-processing parameters
 | |
| 
 | |
| Users can modify the following pre-processing parameters for their needs. This will affect the final reasoning and deployment results
 | |
| 
 | |
| > > * **size**(list[int]):  This parameter modifies the 'resize' during preprocessing and contains two integer elements representing [width, height]. The default value is [640, 640].
 | |
| > > * **padding_value**(list[float]): This parameter modifies the value of the padding when resizing the image. It contains three floating-point elements, representing the values of the three channels. The default value is [114, 114, 114].
 | |
| > > * **is_no_pad**(bool): This parameter determines whether the image is resized by padding, `is_no_pad=ture` means no padding is used. The default value is `is_no_pad=false`.
 | |
| > > * **is_mini_pad**(bool): This parameter allows the width and height of the image after resize to be the closest value to the `size` member variable, which the pixel size of the padding can be divided by the `stride` member variable. The default value is `is_mini_pad=false`.
 | |
| > > * **stride**(int): Used with`stris_mini_pad` member value. The default value is`stride=32`
 | |
| 
 | |
| ## Related files
 | |
| 
 | |
| - [YOLOv7 Model Introduction](..)
 | |
| - [YOLOv7 C++ Deployment](../cpp)
 | |
| - [Vision Model Results](../../../../../docs/api/vision_results/)
 | |
| - [how to change inference backend](../../../../../docs/en/faq/how_to_change_backend.md)
 |