mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-28 05:12:24 +08:00

* remove max_num_batched_tokens in parallel config * remove max_num_seqs * update test case * fix test * fix --------- Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
125 lines
3.9 KiB
Python
125 lines
3.9 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import os
|
|
|
|
os.environ["FLAGS_cuda_graph_blacklist"] = "pd_op.matmul,pd_op.transpose"
|
|
|
|
|
|
import unittest
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
|
|
from fastdeploy.config import (
|
|
CacheConfig,
|
|
FDConfig,
|
|
GraphOptimizationConfig,
|
|
ParallelConfig,
|
|
SchedulerConfig,
|
|
)
|
|
from fastdeploy.model_executor.forward_meta import ForwardMeta
|
|
from fastdeploy.model_executor.graph_optimization.decorator import (
|
|
support_graph_optimization,
|
|
)
|
|
|
|
|
|
@support_graph_optimization
|
|
class Attention(nn.Layer):
|
|
def __init__(self, fd_config: FDConfig) -> None:
|
|
super().__init__()
|
|
self.embed_tokens = nn.Embedding(num_embeddings=100, embedding_dim=32)
|
|
self.qkv_proj = nn.Linear(32, 64)
|
|
self.attn = nn.MultiHeadAttention(embed_dim=64, num_heads=1)
|
|
self.o_proj = nn.Linear(64, 32)
|
|
|
|
def forward(
|
|
self,
|
|
ids_remove_padding,
|
|
forward_meta: ForwardMeta,
|
|
):
|
|
hidden_states = self.embed_tokens(forward_meta.ids_remove_padding)
|
|
qkv_out = self.qkv_proj(hidden_states)
|
|
attn_out = self.attn(qkv_out)
|
|
output = self.o_proj(attn_out)
|
|
|
|
return output
|
|
|
|
def forward_dynamic(
|
|
self,
|
|
ids_remove_padding,
|
|
forward_meta: ForwardMeta,
|
|
):
|
|
hidden_states = self.embed_tokens(forward_meta.ids_remove_padding)
|
|
qkv_out = self.qkv_proj(hidden_states)
|
|
attn_out = self.attn(qkv_out)
|
|
output = self.o_proj(attn_out)
|
|
|
|
return output
|
|
|
|
|
|
class TestModel(nn.Layer):
|
|
def __init__(self, fd_config: FDConfig, **kwargs):
|
|
super().__init__()
|
|
self.model = Attention(fd_config)
|
|
|
|
def forward(self, ids_remove_padding, forward_meta: ForwardMeta):
|
|
return self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
|
|
|
|
def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta):
|
|
return self.model.forward_dynamic(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta)
|
|
|
|
|
|
class TestStaticGraphCUDAGraphSplit(unittest.TestCase):
|
|
|
|
def test(self):
|
|
"""Run test case"""
|
|
# Set FastDeploy config
|
|
graph_opt_config = GraphOptimizationConfig({"use_cudagraph": True, "graph_opt_level": 1})
|
|
scheduler_config = SchedulerConfig({"max_num_seqs": 1})
|
|
graph_opt_config._set_cudagraph_sizes(max_num_seqs=scheduler_config.max_num_seqs)
|
|
graph_opt_config.init_with_cudagrpah_size(max_capture_size=scheduler_config.max_num_seqs)
|
|
cache_config = CacheConfig({})
|
|
parallel_config = ParallelConfig(args={})
|
|
|
|
fd_config = FDConfig(
|
|
graph_opt_config=graph_opt_config,
|
|
scheduler_config=scheduler_config,
|
|
cache_config=cache_config,
|
|
parallel_config=parallel_config,
|
|
test_mode=True,
|
|
)
|
|
|
|
test_model1 = TestModel(fd_config=fd_config)
|
|
x = paddle.randint(32, shape=[1, 8])
|
|
forward_meta1 = ForwardMeta(input_ids=x, ids_remove_padding=x, step_use_cudagraph=True)
|
|
|
|
# Trigger Capture
|
|
_ = test_model1(x, forward_meta=forward_meta1)
|
|
|
|
# Replay
|
|
_ = test_model1(x, forward_meta=forward_meta1)
|
|
output1 = test_model1(x, forward_meta=forward_meta1)
|
|
|
|
# Correct output
|
|
output1_correct = test_model1.forward_correct(x, forward_meta=forward_meta1)
|
|
|
|
assert (output1 == output1_correct).all()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|