""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import os os.environ["FLAGS_cuda_graph_blacklist"] = "pd_op.matmul,pd_op.transpose" import unittest import paddle import paddle.nn as nn from fastdeploy.config import ( CacheConfig, FDConfig, GraphOptimizationConfig, ParallelConfig, SchedulerConfig, ) from fastdeploy.model_executor.forward_meta import ForwardMeta from fastdeploy.model_executor.graph_optimization.decorator import ( support_graph_optimization, ) @support_graph_optimization class Attention(nn.Layer): def __init__(self, fd_config: FDConfig) -> None: super().__init__() self.embed_tokens = nn.Embedding(num_embeddings=100, embedding_dim=32) self.qkv_proj = nn.Linear(32, 64) self.attn = nn.MultiHeadAttention(embed_dim=64, num_heads=1) self.o_proj = nn.Linear(64, 32) def forward( self, ids_remove_padding, forward_meta: ForwardMeta, ): hidden_states = self.embed_tokens(forward_meta.ids_remove_padding) qkv_out = self.qkv_proj(hidden_states) attn_out = self.attn(qkv_out) output = self.o_proj(attn_out) return output def forward_dynamic( self, ids_remove_padding, forward_meta: ForwardMeta, ): hidden_states = self.embed_tokens(forward_meta.ids_remove_padding) qkv_out = self.qkv_proj(hidden_states) attn_out = self.attn(qkv_out) output = self.o_proj(attn_out) return output class TestModel(nn.Layer): def __init__(self, fd_config: FDConfig, **kwargs): super().__init__() self.model = Attention(fd_config) def forward(self, ids_remove_padding, forward_meta: ForwardMeta): return self.model(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta) def forward_correct(self, ids_remove_padding, forward_meta: ForwardMeta): return self.model.forward_dynamic(ids_remove_padding=ids_remove_padding, forward_meta=forward_meta) class TestStaticGraphCUDAGraphSplit(unittest.TestCase): def test(self): """Run test case""" # Set FastDeploy config graph_opt_config = GraphOptimizationConfig({"use_cudagraph": True, "graph_opt_level": 1}) scheduler_config = SchedulerConfig({"max_num_seqs": 1}) graph_opt_config._set_cudagraph_sizes(max_num_seqs=scheduler_config.max_num_seqs) graph_opt_config.init_with_cudagrpah_size(max_capture_size=scheduler_config.max_num_seqs) cache_config = CacheConfig({}) parallel_config = ParallelConfig(args={}) fd_config = FDConfig( graph_opt_config=graph_opt_config, scheduler_config=scheduler_config, cache_config=cache_config, parallel_config=parallel_config, test_mode=True, ) test_model1 = TestModel(fd_config=fd_config) x = paddle.randint(32, shape=[1, 8]) forward_meta1 = ForwardMeta(input_ids=x, ids_remove_padding=x, step_use_cudagraph=True) # Trigger Capture _ = test_model1(x, forward_meta=forward_meta1) # Replay _ = test_model1(x, forward_meta=forward_meta1) output1 = test_model1(x, forward_meta=forward_meta1) # Correct output output1_correct = test_model1.forward_correct(x, forward_meta=forward_meta1) assert (output1 == output1_correct).all() if __name__ == "__main__": unittest.main()