Files
FastDeploy/examples/vision/detection/yolov7/quantize/cpp/README.md
yeliang2258 104d965b38 [Backend] Add YOLOv5、PPYOLOE and PP-Liteseg for RV1126 (#647)
* add yolov5 and ppyoloe for rk1126

* update code, rename rk1126 to rv1126

* add PP-Liteseg

* update lite lib

* updade doc for PPYOLOE

* update doc

* fix docs

* fix doc and examples

* update code

* uodate doc

* update doc

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-12-05 16:48:00 +08:00

1.8 KiB
Executable File
Raw Blame History

YOLOv7量化模型 C++部署示例

本目录下提供的infer.cc,可以帮助用户快速完成YOLOv7量化模型在CPU/GPU上的部署推理加速.

部署准备

FastDeploy环境准备

量化模型准备

    1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
    1. 用户可以使用FastDeploy提供的一键模型自动化压缩工具,自行进行模型量化, 并使用产出的量化模型进行部署.

以量化后的YOLOv7模型为例, 进行部署

在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载FastDeloy提供的yolov7量化模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_quant.tar
tar -xvf yolov7_quant.tar
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg


# 在CPU上使用ONNX Runtime推理量化模型
./infer_demo yolov7_quant 000000014439.jpg 0
# 在GPU上使用TensorRT推理量化模型
./infer_demo yolov7_quant 000000014439.jpg 1
# 在GPU上使用Paddle-TensorRT推理量化模型
./infer_demo yolov7_quant 000000014439.jpg 2