Files
FastDeploy/examples/vision/ocr/PP-OCR/cpu-gpu/python/infer_structurev2_table.py
thunder95 2c5fd91a7f [Hackthon_4th 242] Support en_ppstructure_mobile_v2.0_SLANet (#1816)
* first draft

* update api name

* fix bug

* fix bug and

* fix bug in c api

* fix bug in c_api

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-27 10:45:14 +08:00

78 lines
2.1 KiB
Python
Executable File

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--table_model",
required=True,
help="Path of Table recognition model of PPOCR.")
parser.add_argument(
"--table_char_dict_path",
type=str,
required=True,
help="tabel recognition dict path.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--device_id",
type=int,
default=0,
help="Define which GPU card used to run model.")
return parser.parse_args()
def build_option(args):
table_option = fd.RuntimeOption()
if args.device.lower() == "gpu":
table_option.use_gpu(args.device_id)
return table_option
args = parse_arguments()
table_model_file = os.path.join(args.table_model, "inference.pdmodel")
table_params_file = os.path.join(args.table_model, "inference.pdiparams")
# Set the runtime option
table_option = build_option(args)
# Create the table_model
table_model = fd.vision.ocr.StructureV2Table(
table_model_file, table_params_file, args.table_char_dict_path,
table_option)
# Read the image
im = cv2.imread(args.image)
# Predict and return the results
result = table_model.predict(im)
print(result)