# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse parser = argparse.ArgumentParser() parser.add_argument( "--table_model", required=True, help="Path of Table recognition model of PPOCR.") parser.add_argument( "--table_char_dict_path", type=str, required=True, help="tabel recognition dict path.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.") return parser.parse_args() def build_option(args): table_option = fd.RuntimeOption() if args.device.lower() == "gpu": table_option.use_gpu(args.device_id) return table_option args = parse_arguments() table_model_file = os.path.join(args.table_model, "inference.pdmodel") table_params_file = os.path.join(args.table_model, "inference.pdiparams") # Set the runtime option table_option = build_option(args) # Create the table_model table_model = fd.vision.ocr.StructureV2Table( table_model_file, table_params_file, args.table_char_dict_path, table_option) # Read the image im = cv2.imread(args.image) # Predict and return the results result = table_model.predict(im) print(result)