Files
FastDeploy/fastdeploy/model_executor/layers/quantization/block_wise_fp8.py
bukejiyu 29ed617f0f [v1 loader]qwen Offline fp8 (#4036)
* support offline fp8

* update ut

* update ut

* update ut

* fix

* update

* update
2025-09-15 13:44:11 +08:00

209 lines
7.9 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
import paddle
import fastdeploy
from fastdeploy import envs
from fastdeploy.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
)
from fastdeploy.model_executor.layers.moe import FusedMoE
from fastdeploy.model_executor.utils import TensorTracker, set_weight_attrs
from ..utils import get_tensor, per_block_cast_to_fp8
from .quant_base import QuantConfigBase, QuantMethodBase
class BlockWiseFP8Config(QuantConfigBase):
"""
block wise quantization config, only support fp8 quant and only supports loading weights in BF16 format.
After loading the weights, it will automatically compute quantization sparsity and dynamically perform
per-token quantization of activations during inference.
"""
def __init__(self, weight_block_size: list = [-1, -1], is_checkpoint_bf16: bool = False) -> None:
super().__init__()
self.weight_block_size = weight_block_size
self.quant_max_bound = 448
self.quant_min_bound = -448
self.quant_round_type = 1
self.use_deep_gemm = bool(envs.FD_USE_DEEP_GEMM)
self.is_checkpoint_bf16 = is_checkpoint_bf16
def name(self) -> str:
return "block_wise_fp8"
@classmethod
def from_config(cls, config: dict) -> "BlockWiseFP8Config":
weight_block_size = config.get("weight_block_size", [128, 128])
is_checkpoint_bf16 = not config.get("is_quantized", False)
return cls(weight_block_size, is_checkpoint_bf16)
def get_quant_method(self, layer) -> Optional[QuantMethodBase]:
"""
Get quantization method.
"""
if isinstance(layer, FusedMoE):
if layer.ep_size > 1 or self.use_deep_gemm:
from fastdeploy.model_executor.layers.moe.fused_moe_deepgemm_backend import (
DeepGemmFusedMoeMethod,
)
return DeepGemmFusedMoeMethod(self)
else:
from fastdeploy.model_executor.layers.moe.fused_moe_triton_backend import (
BlockWiseFP8MoEMethod,
)
return BlockWiseFP8MoEMethod(self)
else:
return BlockWiseFP8LinearMethod(self)
class BlockWiseFP8LinearMethod(QuantMethodBase):
"""
block wise quantization method for linear
"""
def __init__(
self,
quant_config: BlockWiseFP8Config,
) -> None:
super().__init__()
self.quant_config = quant_config
def create_weights(self, layer, **extra_weight_attrs):
# TODO(bukejiyu): remove v1 loader check when v0 loader is removed
if self.quant_config.is_checkpoint_bf16 and layer.fd_config.load_config.load_choices == "default_v1":
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
extra_weight_attrs["weight_need_transpose"] = extra_weight_attrs.get("model_format") == "torch"
quant_attrs = extra_weight_attrs
if isinstance(layer, MergedColumnParallelLinear) or isinstance(layer, QKVParallelLinear):
quant_attrs = {
**extra_weight_attrs,
"tensor_track": TensorTracker(
shape=layer.weight_shape, output_dim=extra_weight_attrs.get("output_dim")
),
}
set_weight_attrs(
layer.weight,
quant_attrs,
)
else:
layer.weight_shape.reverse()
layer.weight_dtype = "float8_e4m3fn"
layer.weight = layer.create_parameter(
shape=layer.weight_shape,
dtype=layer.weight_dtype,
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale_inv = layer.create_parameter(
shape=[
(layer.weight_shape[0] + self.quant_config.weight_block_size[0] - 1)
// self.quant_config.weight_block_size[0],
(layer.weight_shape[1] + self.quant_config.weight_block_size[1] - 1)
// self.quant_config.weight_block_size[1],
],
dtype="float32",
is_bias=False,
)
extra_weight_attrs["output_dim"] = not extra_weight_attrs["output_dim"]
extra_weight_attrs["weight_need_transpose"] = not extra_weight_attrs.get("model_format") == "torch"
set_weight_attrs(
layer.weight,
extra_weight_attrs,
)
set_weight_attrs(
layer.weight_scale_inv,
{
**extra_weight_attrs,
"is_scale": True,
},
)
def process_weights_after_loading(self, layer) -> None:
if not self.quant_config.is_checkpoint_bf16:
return
weight_tensor = layer.weight.transpose([1, 0])
quanted_weight_tensor, weight_block_scale_tensor = per_block_cast_to_fp8(weight_tensor)
if hasattr(layer.weight, "tensor_track"):
layer.weight.tensor_track = None
layer.weight.value().get_tensor()._clear()
del layer.weight
layer.weight = layer.create_parameter(
shape=quanted_weight_tensor.shape,
dtype="float8_e4m3fn",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight_scale_inv = layer.create_parameter(
shape=weight_block_scale_tensor.shape,
dtype="float32",
is_bias=False,
default_initializer=paddle.nn.initializer.Constant(0),
)
layer.weight.copy_(quanted_weight_tensor, False)
layer.weight_scale_inv.copy_(weight_block_scale_tensor, False)
def process_loaded_weights(self, layer, weights) -> None:
weight_tensor = weights.transpose([1, 0])
quanted_weight_tensor, weight_block_scale_tensor = per_block_cast_to_fp8(weight_tensor)
layer.weight.copy_(quanted_weight_tensor, False)
layer.weight_scale_inv.set_value(weight_block_scale_tensor)
def process_prequanted_weights(self, layer, state_dict, is_rearrange: bool = False):
"""
process_prequanted_weights
"""
quant_weight = get_tensor(state_dict.pop(layer.weight_key))
weight_scale = get_tensor(state_dict.pop(layer.weight_scale_key))
quant_weight = quant_weight.transpose([1, 0]).contiguous()
layer.weight.copy_(quant_weight.view("float8_e4m3fn"), False)
weight_scale = weight_scale.transpose([1, 0])
layer.weight_scale_inv.set_value(weight_scale)
def apply(self, layer, x):
x, x_scale_tensor = fastdeploy.model_executor.ops.gpu.per_token_quant_padding(
x, self.quant_config.weight_block_size[0]
)
linear_out = paddle.empty((x.shape[0], layer.output_size), dtype=paddle.bfloat16)
from fastdeploy.model_executor.ops.gpu import deep_gemm
deep_gemm.gemm_fp8_fp8_bf16_nt(
(x, x_scale_tensor),
(layer.weight, layer.weight_scale_inv),
linear_out,
)
if layer.with_bias:
linear_out = paddle.add(linear_out, layer.bias)
return linear_out