""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from typing import Optional import paddle import fastdeploy from fastdeploy import envs from fastdeploy.model_executor.layers.linear import ( MergedColumnParallelLinear, QKVParallelLinear, ) from fastdeploy.model_executor.layers.moe import FusedMoE from fastdeploy.model_executor.utils import TensorTracker, set_weight_attrs from ..utils import get_tensor, per_block_cast_to_fp8 from .quant_base import QuantConfigBase, QuantMethodBase class BlockWiseFP8Config(QuantConfigBase): """ block wise quantization config, only support fp8 quant and only supports loading weights in BF16 format. After loading the weights, it will automatically compute quantization sparsity and dynamically perform per-token quantization of activations during inference. """ def __init__(self, weight_block_size: list = [-1, -1], is_checkpoint_bf16: bool = False) -> None: super().__init__() self.weight_block_size = weight_block_size self.quant_max_bound = 448 self.quant_min_bound = -448 self.quant_round_type = 1 self.use_deep_gemm = bool(envs.FD_USE_DEEP_GEMM) self.is_checkpoint_bf16 = is_checkpoint_bf16 def name(self) -> str: return "block_wise_fp8" @classmethod def from_config(cls, config: dict) -> "BlockWiseFP8Config": weight_block_size = config.get("weight_block_size", [128, 128]) is_checkpoint_bf16 = not config.get("is_quantized", False) return cls(weight_block_size, is_checkpoint_bf16) def get_quant_method(self, layer) -> Optional[QuantMethodBase]: """ Get quantization method. """ if isinstance(layer, FusedMoE): if layer.ep_size > 1 or self.use_deep_gemm: from fastdeploy.model_executor.layers.moe.fused_moe_deepgemm_backend import ( DeepGemmFusedMoeMethod, ) return DeepGemmFusedMoeMethod(self) else: from fastdeploy.model_executor.layers.moe.fused_moe_triton_backend import ( BlockWiseFP8MoEMethod, ) return BlockWiseFP8MoEMethod(self) else: return BlockWiseFP8LinearMethod(self) class BlockWiseFP8LinearMethod(QuantMethodBase): """ block wise quantization method for linear """ def __init__( self, quant_config: BlockWiseFP8Config, ) -> None: super().__init__() self.quant_config = quant_config def create_weights(self, layer, **extra_weight_attrs): # TODO(bukejiyu): remove v1 loader check when v0 loader is removed if self.quant_config.is_checkpoint_bf16 and layer.fd_config.load_config.load_choices == "default_v1": layer.weight = layer.create_parameter( shape=layer.weight_shape, dtype=layer.weight_dtype, is_bias=False, default_initializer=paddle.nn.initializer.Constant(0), ) extra_weight_attrs["weight_need_transpose"] = extra_weight_attrs.get("model_format") == "torch" quant_attrs = extra_weight_attrs if isinstance(layer, MergedColumnParallelLinear) or isinstance(layer, QKVParallelLinear): quant_attrs = { **extra_weight_attrs, "tensor_track": TensorTracker( shape=layer.weight_shape, output_dim=extra_weight_attrs.get("output_dim") ), } set_weight_attrs( layer.weight, quant_attrs, ) else: layer.weight_shape.reverse() layer.weight_dtype = "float8_e4m3fn" layer.weight = layer.create_parameter( shape=layer.weight_shape, dtype=layer.weight_dtype, is_bias=False, default_initializer=paddle.nn.initializer.Constant(0), ) layer.weight_scale_inv = layer.create_parameter( shape=[ (layer.weight_shape[0] + self.quant_config.weight_block_size[0] - 1) // self.quant_config.weight_block_size[0], (layer.weight_shape[1] + self.quant_config.weight_block_size[1] - 1) // self.quant_config.weight_block_size[1], ], dtype="float32", is_bias=False, ) extra_weight_attrs["output_dim"] = not extra_weight_attrs["output_dim"] extra_weight_attrs["weight_need_transpose"] = not extra_weight_attrs.get("model_format") == "torch" set_weight_attrs( layer.weight, extra_weight_attrs, ) set_weight_attrs( layer.weight_scale_inv, { **extra_weight_attrs, "is_scale": True, }, ) def process_weights_after_loading(self, layer) -> None: if not self.quant_config.is_checkpoint_bf16: return weight_tensor = layer.weight.transpose([1, 0]) quanted_weight_tensor, weight_block_scale_tensor = per_block_cast_to_fp8(weight_tensor) if hasattr(layer.weight, "tensor_track"): layer.weight.tensor_track = None layer.weight.value().get_tensor()._clear() del layer.weight layer.weight = layer.create_parameter( shape=quanted_weight_tensor.shape, dtype="float8_e4m3fn", is_bias=False, default_initializer=paddle.nn.initializer.Constant(0), ) layer.weight_scale_inv = layer.create_parameter( shape=weight_block_scale_tensor.shape, dtype="float32", is_bias=False, default_initializer=paddle.nn.initializer.Constant(0), ) layer.weight.copy_(quanted_weight_tensor, False) layer.weight_scale_inv.copy_(weight_block_scale_tensor, False) def process_loaded_weights(self, layer, weights) -> None: weight_tensor = weights.transpose([1, 0]) quanted_weight_tensor, weight_block_scale_tensor = per_block_cast_to_fp8(weight_tensor) layer.weight.copy_(quanted_weight_tensor, False) layer.weight_scale_inv.set_value(weight_block_scale_tensor) def process_prequanted_weights(self, layer, state_dict, is_rearrange: bool = False): """ process_prequanted_weights """ quant_weight = get_tensor(state_dict.pop(layer.weight_key)) weight_scale = get_tensor(state_dict.pop(layer.weight_scale_key)) quant_weight = quant_weight.transpose([1, 0]).contiguous() layer.weight.copy_(quant_weight.view("float8_e4m3fn"), False) weight_scale = weight_scale.transpose([1, 0]) layer.weight_scale_inv.set_value(weight_scale) def apply(self, layer, x): x, x_scale_tensor = fastdeploy.model_executor.ops.gpu.per_token_quant_padding( x, self.quant_config.weight_block_size[0] ) linear_out = paddle.empty((x.shape[0], layer.output_size), dtype=paddle.bfloat16) from fastdeploy.model_executor.ops.gpu import deep_gemm deep_gemm.gemm_fp8_fp8_bf16_nt( (x, x_scale_tensor), (layer.weight, layer.weight_scale_inv), linear_out, ) if layer.with_bias: linear_out = paddle.add(linear_out, layer.bias) return linear_out