mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			130 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # InsightFace C++部署示例
 | ||
| 本目录下提供infer_xxx.cc快速完成InsighFace模型包括ArcFace\CosFace\VPL\Partial_FC在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
 | ||
| 以ArcFace为例提供`infer_arcface.cc`快速完成ArcFace在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
 | ||
| 
 | ||
| 在部署前,需确认以下两个步骤
 | ||
| 
 | ||
| - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)  
 | ||
| - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
 | ||
| 
 | ||
| 以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
 | ||
| 
 | ||
| ```bash
 | ||
| mkdir build
 | ||
| cd build
 | ||
| wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-0.4.0.tgz
 | ||
| tar xvf fastdeploy-linux-x64-0.4.0.tgz
 | ||
| cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-0.4.0
 | ||
| make -j
 | ||
| 
 | ||
| #下载官方转换好的ArcFace模型文件和测试图片
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
 | ||
| wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG
 | ||
| wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG
 | ||
| wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG
 | ||
| 
 | ||
| 
 | ||
| # CPU推理
 | ||
| ./infer_arcface_demo ms1mv3_arcface_r100.onnx test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG test_lite_focal_arcface_2.JPG 0
 | ||
| # GPU推理
 | ||
| ./infer_arcface_demo ms1mv3_arcface_r100.onnx test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG test_lite_focal_arcface_2.JPG 1
 | ||
| # GPU上TensorRT推理
 | ||
| ./infer_arcface_demo ms1mv3_arcface_r100.onnx test_lite_focal_arcface_0.JPG test_lite_focal_arcface_1.JPG test_lite_focal_arcface_2.JPG 2
 | ||
| ```
 | ||
| 
 | ||
| 运行完成可视化结果如下图所示
 | ||
| 
 | ||
| <div width="700">
 | ||
| <img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
 | ||
| <img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
 | ||
| <img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
 | ||
| </div>
 | ||
| 
 | ||
| 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:  
 | ||
| - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
 | ||
| 
 | ||
| ## InsightFace C++接口
 | ||
| 
 | ||
| ### ArcFace类
 | ||
| 
 | ||
| ```c++
 | ||
| fastdeploy::vision::faceid::ArcFace(
 | ||
|         const string& model_file,
 | ||
|         const string& params_file = "",
 | ||
|         const RuntimeOption& runtime_option = RuntimeOption(),
 | ||
|         const ModelFormat& model_format = ModelFormat::ONNX)
 | ||
| ```
 | ||
| 
 | ||
| ArcFace模型加载和初始化,其中model_file为导出的ONNX模型格式。
 | ||
| 
 | ||
| ### CosFace类
 | ||
| 
 | ||
| ```c++
 | ||
| fastdeploy::vision::faceid::CosFace(
 | ||
|         const string& model_file,
 | ||
|         const string& params_file = "",
 | ||
|         const RuntimeOption& runtime_option = RuntimeOption(),
 | ||
|         const ModelFormat& model_format = ModelFormat::ONNX)
 | ||
| ```
 | ||
| 
 | ||
| CosFace模型加载和初始化,其中model_file为导出的ONNX模型格式。
 | ||
| 
 | ||
| ### PartialFC类
 | ||
| 
 | ||
| ```c++
 | ||
| fastdeploy::vision::faceid::PartialFC(
 | ||
|         const string& model_file,
 | ||
|         const string& params_file = "",
 | ||
|         const RuntimeOption& runtime_option = RuntimeOption(),
 | ||
|         const ModelFormat& model_format = ModelFormat::ONNX)
 | ||
| ```
 | ||
| 
 | ||
| PartialFC模型加载和初始化,其中model_file为导出的ONNX模型格式。
 | ||
| 
 | ||
| ### VPL类
 | ||
| 
 | ||
| ```c++
 | ||
| fastdeploy::vision::faceid::VPL(
 | ||
|         const string& model_file,
 | ||
|         const string& params_file = "",
 | ||
|         const RuntimeOption& runtime_option = RuntimeOption(),
 | ||
|         const ModelFormat& model_format = ModelFormat::ONNX)
 | ||
| ```
 | ||
| 
 | ||
| VPL模型加载和初始化,其中model_file为导出的ONNX模型格式。
 | ||
| **参数**
 | ||
| 
 | ||
| > * **model_file**(str): 模型文件路径
 | ||
| > * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
 | ||
| > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
 | ||
| > * **model_format**(ModelFormat): 模型格式,默认为ONNX格式
 | ||
| 
 | ||
| #### Predict函数
 | ||
| 
 | ||
| > ```c++
 | ||
| > ArcFace::Predict(cv::Mat* im, FaceRecognitionResult* result)
 | ||
| > ```
 | ||
| >
 | ||
| > 模型预测接口,输入图像直接输出检测结果。
 | ||
| >
 | ||
| > **参数**
 | ||
| >
 | ||
| > > * **im**: 输入图像,注意需为HWC,BGR格式
 | ||
| > > * **result**: 检测结果,包括检测框,各个框的置信度, FaceRecognitionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| 
 | ||
| ### 类成员变量
 | ||
| #### 预处理参数
 | ||
| 用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
 | ||
| 
 | ||
| 
 | ||
| > > * **size**(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
 | ||
| > > * **alpha**(vector<float>): 预处理归一化的alpha值,计算公式为`x'=x*alpha+beta`,alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
 | ||
| > > * **beta**(vector<float>): 预处理归一化的beta值,计算公式为`x'=x*alpha+beta`,beta默认为[-1.f, -1.f, -1.f]
 | ||
| > > * **swap_rb**(bool): 预处理是否将BGR转换成RGB,默认true
 | ||
| > > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化,默认false
 | ||
| 
 | ||
| - [模型介绍](../../)
 | ||
| - [Python部署](../python)
 | ||
| - [视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| - [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
 | 
