mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Fix links in readme * Fix links in readme * Update PPOCRv2/v3 examples * Update auto compression configs * Add neww quantization support for paddleclas model * Update quantized Yolov6s model download link
38 lines
1.8 KiB
Markdown
Executable File
38 lines
1.8 KiB
Markdown
Executable File
# YOLOv6量化模型 C++部署示例
|
||
|
||
本目录下提供的`infer.cc`,可以帮助用户快速完成YOLOv6s量化模型在CPU/GPU上的部署推理加速.
|
||
|
||
## 部署准备
|
||
### FastDeploy环境准备
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
### 量化模型准备
|
||
- 1. 用户可以直接使用由FastDeploy提供的量化模型进行部署.
|
||
- 2. 用户可以使用FastDeploy提供的[一键模型自动化压缩工具](../../../../../../tools/common_tools/auto_compression/),自行进行模型量化, 并使用产出的量化模型进行部署.
|
||
|
||
## 以量化后的YOLOv6s模型为例, 进行部署
|
||
在本目录执行如下命令即可完成编译,以及量化模型部署.支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
|
||
```bash
|
||
mkdir build
|
||
cd build
|
||
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
|
||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||
make -j
|
||
|
||
#下载FastDeloy提供的yolov6s量化模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov6s_qat_model_new.tar
|
||
tar -xvf yolov6s_qat_model.tar
|
||
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
|
||
|
||
|
||
# 在CPU上使用ONNX Runtime推理量化模型
|
||
./infer_demo yolov6s_qat_model 000000014439.jpg 0
|
||
# 在GPU上使用TensorRT推理量化模型
|
||
./infer_demo yolov6s_qat_model 000000014439.jpg 1
|
||
# 在GPU上使用Paddle-TensorRT推理量化模型
|
||
./infer_demo yolov6s_qat_model 000000014439.jpg 2
|
||
```
|