mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
113 lines
3.6 KiB
Python
Executable File
113 lines
3.6 KiB
Python
Executable File
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--model", required=True, help="Path of RobustVideoMatting model.")
|
||
parser.add_argument("--image", type=str, help="Path of test image file.")
|
||
parser.add_argument("--video", type=str, help="Path of test video file.")
|
||
parser.add_argument(
|
||
"--bg",
|
||
type=str,
|
||
required=True,
|
||
default=None,
|
||
help="Path of test background image file.")
|
||
parser.add_argument(
|
||
'--output-composition',
|
||
type=str,
|
||
default="composition.mp4",
|
||
help="Path of composition video file.")
|
||
parser.add_argument(
|
||
'--output-alpha',
|
||
type=str,
|
||
default="alpha.mp4",
|
||
help="Path of alpha video file.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu' or 'gpu'.")
|
||
parser.add_argument(
|
||
"--use_trt",
|
||
type=ast.literal_eval,
|
||
default=False,
|
||
help="Wether to use tensorrt.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
option = fd.RuntimeOption()
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
if args.use_trt:
|
||
option.use_trt_backend()
|
||
option.set_trt_input_shape("src", [1, 3, 1920, 1080])
|
||
option.set_trt_input_shape("r1i", [1, 1, 1, 1], [1, 16, 240, 135],
|
||
[1, 16, 240, 135])
|
||
option.set_trt_input_shape("r2i", [1, 1, 1, 1], [1, 20, 120, 68],
|
||
[1, 20, 120, 68])
|
||
option.set_trt_input_shape("r3i", [1, 1, 1, 1], [1, 40, 60, 34],
|
||
[1, 40, 60, 34])
|
||
option.set_trt_input_shape("r4i", [1, 1, 1, 1], [1, 64, 30, 17],
|
||
[1, 64, 30, 17])
|
||
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
output_composition = args.output_composition
|
||
output_alpha = args.output_alpha
|
||
|
||
# é…<C3A9>ç½®runtimeï¼ŒåŠ è½½æ¨¡åž‹
|
||
runtime_option = build_option(args)
|
||
model = fd.vision.matting.RobustVideoMatting(
|
||
args.model, runtime_option=runtime_option)
|
||
bg = cv2.imread(args.bg)
|
||
|
||
if args.video is not None:
|
||
# for video
|
||
cap = cv2.VideoCapture(args.video)
|
||
# Define the codec and create VideoWriter object
|
||
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
||
composition = cv2.VideoWriter(output_composition, fourcc, 20.0,
|
||
(1080, 1920))
|
||
alpha = cv2.VideoWriter(output_alpha, fourcc, 20.0, (1080, 1920))
|
||
|
||
frame_id = 0
|
||
while True:
|
||
frame_id = frame_id + 1
|
||
_, frame = cap.read()
|
||
if frame is None:
|
||
break
|
||
result = model.predict(frame)
|
||
vis_im = fd.vision.vis_matting(frame, result)
|
||
vis_im_with_bg = fd.vision.swap_background_matting(frame, bg, result)
|
||
alpha.write(vis_im)
|
||
composition.write(vis_im_with_bg)
|
||
cv2.waitKey(30)
|
||
cap.release()
|
||
composition.release()
|
||
alpha.release()
|
||
cv2.destroyAllWindows()
|
||
print("Visualized result video save in {} and {}".format(
|
||
output_composition, output_alpha))
|
||
|
||
if args.image is not None:
|
||
# for image
|
||
im = cv2.imread(args.image)
|
||
result = model.predict(im)
|
||
print(result)
|
||
# å<>¯è§†åŒ–结果
|
||
vis_im = fd.vision.vis_matting(im, result)
|
||
vis_im_with_bg = fd.vision.swap_background_matting(im, bg, result)
|
||
cv2.imwrite("visualized_result_fg.jpg", vis_im)
|
||
cv2.imwrite("visualized_result_replaced_bg.jpg", vis_im_with_bg)
|
||
print(
|
||
"Visualized result save in ./visualized_result_replaced_bg.jpg and ./visualized_result_fg.jpg"
|
||
)
|